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ENVIRONMENTAL FLUID DYNAMICS

Attempt BOTH questions in Section A and THREE in Section B.

There are six questions in total.

Questions in Section A carry half the weight of questions in Section B.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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Section A

1 A long wave tank contains water initially at rest with a uniform depth H. A piston-
like wave maker located at x = 0 is turned on at t = 0 inducing a depth averaged velocity
U sinωt at this point.

(a) Derive the dispersion relationship for small amplitude waves and determine the
phase and group velocities. Describe the deep water and shallow water limits.

(b) For finite amplitude waves in the shallow water limit, determine the depth of
the water at the wave maker. Use an x− t diagram and sketches to outline the evolution
of the waves as they propagate along the tank. Show that the leading edge of the first

wave produced forms a shock (bore) at a distance
4
9

gH

Uω
from the wave maker.

2 (a) Describe the “4/3’s” heat transfer law for high Rayleigh number Rayleigh-
Benard convection, stating all assumptions.

(b) A horizontal layer of fluid lies between two horizontal boundaries separated by
a distance h. For times t < 0 the fluid layer and the upper and lower boundaries are at
temperature T = To. At time t = 0, the temperature of the lower boundary is impulsively
raised to T = To + ∆T with ∆T > 0 and then maintained at this new temperature.
Assuming that the “4/3’s” law can be used at all times to model the heat transfer across
the upper and lower boundaries, derive (BUT DO NOT SOLVE) an equation to model
the evolution of the mean temperature of the fluid layer, stating all assumptions.

(c) Assuming that the “4/3’s” law can be replaced by a “3/3’s” law, determine the
mean temperature in the fluid layer as a function of time. What is the mean temperature
in the fluid layer in the limit as t →∞?
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Section B

3 A fluid layer of depth h and velocity u contains a dilute suspension of particles of
density ρp, volume concentration φ and settling velocity Vs in fluid of density ρ0. The
particle-laden layer lies below a deep ambient layer of density ρ0 in a channel of unit width.

(a) Describe briefly how turbulence of intensity u′ can keep the particles in
suspension. Why are particles still lost to a lower boundary under such conditions?

(b) Derive the shallow water equations for the case of a layer of constant volume
that remains vertically well mixed. Determine the characteristics of the flow, and the
ordinary differential equations for the properties along these characteristics. You may
neglect any drag terms.

(c) At time t = 0 a layer with particle concentration φo is confined by a barrier
to x < 0 where it has uniform depth H. The barrier is removed at t = 0, allowing a
gravity current to form. The motion of the front of this current is described by a Froude
number F . Outline the origin of this front condition and the assumptions that go into
its derivation (you need not derive the condition). Does the shallow water approximation
apply at the front?

(d) In the limit of Vs = 0, determine the speed of the front and show that for finite
F a region of uniform depth exists behind the front. Describe the evolution of the current,
giving profiles of the depth h and velocity u.

(e) Find an explicit expression for the location of the leading edge of the rarefaction
wave when Vs 6= 0. Using the approximation that the depth of the current near the front
remains at the Vs = 0 value, find also the location of the front when Vs 6= 0.
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4 A thermal is an instantaneous release of buoyancy from a point source. At time
t = 0 a thermal of total buoyancy Bo is released from a source at height z = 0. The
thermal can be modelled as a sphere of radius b and density ρ rising with velocity u in a
quiescent ambient of uniform density ρo according to

d

dt

(
4
3
πb3

)
= 4πb2αu ,

d

dt

(
4
3
πb3ρu

)
=

4
3
πb3g(ρo − ρ) ,

d

dt

(
4
3
πb3g

(ρo − ρ)
ρref

)
= 0 ,

dz

dt
= u ,

where α is the turbulent entrainment coefficient, g is the acceleration of gravity and ρref

is a reference density.

(a) Give a physical interpretation of each of the above equations. Describe how
the Boussinesq approximation can be used to simplify these equations and hence solve for
b(t), u(t), z(t) and ρ(t) when the ambient density ρo is uniform.

(b) Why does a thermal released in an ambient with a constant stable stratification
with buoyancy frequency N have a finite rise height? Discuss how dimensional analysis
can be used to estimate the height of rise of the thermal.

(c) Suppose the ambient fluid is replaced by a two-layer stratification in a cubic
enclosure with cross-sectional area A. The lower layer has depth h1 and density ρ1 and
the upper layer has depth h2 and density ρ2 with ρ2 < ρ1. From time t = 0, thermals are
released from a source at the base of the enclosure at a constant rate f and for 0 < t < t∗

these thermals impinge upon the density interface separating the layers in such a way that
fluid from the upper layer is entrained into the lower layer in a quasi-steady manner. It
can be assumed that the ambient fluid in the lower layer remains well mixed at all times.
At time t = t∗ the buoyancy in the thermal at the height of the interface is such that the
thermal is able to pass through the interface and rise to the top of the domain. The rate
of entrainment across the density interface can be modelled as

E =
dh1

dt
/u∗ = cRi−n ,

where Ri = g′b∗/u∗2 is the Richardson number and c and n are numerical constants.
The Richardson number is defined in terms of the reduced gravity g′ across the density
interface and the thermal radius b∗ and velocity u∗ at the height of the interface. Give a
physical interpretation of the Richardson number and comment on physically meaningful
values of c and n. Assuming that c = n = 1 calculate h1(t) for 0 < t < t∗. What is the
density of the lower layer at the time t∗ when the first thermal is able to pass through the
density interface?
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5 (a) Consider an inviscid two-dimensional stratified flow in the x−z plane described
by a constant buoyancy frequency N . Write down the equations of motion and show that
these can be linearised about a state of rest to obtain

∇ · u′ = 0,

∂u′

∂t
= − 1

ρ0
∇p′ − σẑ,

∂σ

∂t
= −w′N2,

where u′ = (u′, w′) is the velocity perturbuation, ẑ is the unit vector in the z direction,
p′ is the pressure perturbation, ρ0 is the reference density, σ = − g

ρ0
ρ′ is the buoyancy

perturbation and g is gravity. Hence or otherwise derive the dispersion relation for small
amplitude plane waves. Show that the phase and group velocities are perpendicular. Give
a physical interpretation for the phase and group velocities.

(b) The stratified fluid flows with a uniform horizontal velocity U in the x-direction
over a sinusoidal topography described by z = η, where η = η0 cos αx, α is the wavenumber
and η0 the amplitude of the topography. Sketch the characteristics, phase and group
velocities for the waves generated by the topography in both the frame of reference of the
fluid and the frame of reference of the topography. State any assumptions made.

(c) Suppose the stratified fluid has a flat, rigid upper boundary at height H above
the topography. Sketch and describe the modified wave field. Determine the amplitude
and phase of the upward propagating wave field. Show that resonance occurs when
kH tan θ = nπ for some integer n, where θ is the angle between the group velocity and
vertical.
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6 Consider an axisymmetric turbulent plume rising in a uniform ambient from a
source located at height z = 0. The plume has volume flux πQ, specific momentum
flux πM and specific buoyancy flux πB. Assuming top-hat plume variables, Q = b2w,
M = b2w2 and B = b2wg′, where b is the plume radius, w is the vertical velocity in the
plume and g′ is the reduced gravity within the plume. The governing plume equations
may be written as

dQ

dz
= 2αM1/2,

dM

dz
=

QB

M
,

dB

dz
= 0,

where α is the entrainment coefficient.

(a) Discuss the entrainment hypothesis for turbulent plumes. For a pure plume
with B = Bo > 0, Q = 0, M = 0 at z = 0, solve the plume equations for Q, M , and B as
a function of z and hence determine b, w and g′. Show that

Γ =
M5/2

BQ2

is constant.

(b) Consider the case of a forced plume with Q = Qo > 0 and M = Mo > 0 at
z = 0. Define two lengthscales which result from introducing finite Qo and Mo and discuss
their physical significance. Show that

1
Qo

dQ

dz
=

(
20α4Bo

Q3
o

)1/5 (
Q2

Q2
o

− c

)1/5

,

where c is a numerical constant which is to be determined. What is the physical significance
of the cases c < 0, c = 0 and c > 0? Show that for all z, M and Q satisfy

8αM5/2

5BoQ2
o

+ c =
Q2

Q2
o

.

(c) Show that
db

dz
=

6α

5
− cQ2

oBo

2M5/2

and comment on how the rate of spread of the plume varies (i) as a function of c and
(ii) in the limit as z → ∞. Under what conditions can necking of the plume occur (i.e.
db
dz

∣∣
z=0

< 0)?
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