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SLOW VISCOUS FLOWS

Attempt at most THREE questions.

There are four questions in total.

The questions carry equal weight.

Substantially complete answers will be viewed more favourably than fragments.

A Distinction mark can be gained by substantially complete answers to two questions.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 The Papkovich–Neuber representation of Stokes flow is

u = ∇(x·Φ + χ)− 2Φ, p = 2µ∇ ·Φ where ∇2χ = 0, ∇2Φ = 0.

Find the velocity u(x), vorticity ω(x) and strain rate e(x) in the Stokes flow due
to a point force F acting at the origin of an unbounded fluid of viscosity µ.

A force-free couple-free rigid sphere of radius a is placed in an unbounded strain flow
with uniform strain rate E. Find the perturbation to the flow arising from the presence
of the sphere.

Two rigid spheres of radius a are placed far apart in unbounded fluid, which is
otherwise at rest. The first sphere is acted on by a force F and is couple free. The second
sphere is force free and couple free. Explain why the first sphere moves with velocity

U = U0 −
15a4

4R6
(U0 ·R)R + O(a5/R5),

where U0 is the velocity that the first sphere would have if the second sphere were absent,
and R is the vector distance between the centres of the spheres.

By considering F · U, explain why this result is consistent with the Minimum
Dissipation Theorem.

Find the change in velocity of the first sphere if the second sphere is still force free,
but now prevented from rotating by a suitable couple.

[You may quote the results that the Stokes drag on a translating sphere is 6πµaU and the
Stokes flow round a sphere rotating with angular velocity Ω is u = Ω ∧ xa3/r3.]
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2 Use the lubrication approximation to show that the thickness h(x, t) of two-
dimensional gravity-driven flow of a thin layer of viscous fluid on an inclined plane of
slope θ � 1 is described by the equation

∂h

∂t
=

g

3ν

∂

∂x

[
h3

(∂h

∂x
− θ

)]
, (1)

where x is the downslope coordinate, there is no cross-slope variation and surface-tension
is assumed to be negligible. Find the condition for the neglect of inertia if the typical
thickness and downslope lengthscales are ĥ and x̂ respectively, distinguishing between the
cases ĥ � θx̂ and ĥ � θx̂.

Consider the release of a fixed area A (i.e. volume per cross-slope distance) of
viscous fluid at x = 0. After a long time the nose of the current has travelled a distance
xN (t) � (A/θ)1/2. Find an approximate similarity solution for the thickness h(x, t) and
determine xN (t) from mass conservation.

The similarity solution ends abruptly at xN (t) with a front of height hN (t). Show
that

dxN

dt
=

gθh2
N

3ν
.

Re-examine the behaviour near the nose by making the change of variable y = x− xN (t)
in equation (1). Hence show that the shape of the nose is quasi-steady and given by

θy

hN
=

h

hN
+

1
2

ln
(

hN − h

hN + h

)
(−∞ < y ≤ 0).

Sketch this solution and show that the lubrication approximation breaks down in an
O(θ1/2hN ) neighbourhood of y = 0.

Use scaling arguments to estimate the value of hN at which surface tension would
become as important as gravity in determining the length of the nose.

Paper 74 [TURN OVER



4

3 State and prove the Reciprocal Theorem for two Stokes flows with viscosity µ and
no body force.

Prove that the resistance matrix, giving the force F and couple G exerted by a rigid
body when moving with velocity U and angular velocity Ω through surrounding viscous
fluid, is both symmetric and positive definite.

A rigid body comprises three point masses with weights mg at O = (0, 0, 0), λmg
at A = (2L, 0, 0) and λmg at B = (0, 2L, 0), joined along OA and OB by two thin rods
of negligible weight, length 2L and thickness εL. The hydrodynamic resistance to motion
of the point masses is negligible and that of the thin rods is given by the slender-body
formula

f(X) = C(I− 1
2X

′X′) · Ẋ

where C = 4πµ/| ln ε| and X(s, t) is the position along the rod. Calculate the 6 × 6
resistance matrix for this body with respect to the axes fixed in the body. Deduce that

CL

 Ux

Uy

ΩzL

 =

 1
2 − 1

6
1
4

− 1
6

1
2 − 1

4
1
4 − 1

4
3
8

  Fx

Fy

Gz/L

 .

The body is allowed to fall under gravity from an initial position in which OA
is horizontal and B is vertically above O. Show that if λ = 1 the body falls vertically
without rotation, but if λ < 1 the angle θ(t) that OA makes above horizontal increases
monotonically from 0 to π/4 as t →∞. What happens if λ > 1?

Show further that if λ < 1 then the point O drifts sideways as it falls by a
total horizontal distance 2L/3 in the direction of the initial orientation of OA. Find
the corresponding result for λ > 1.
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4 Use scaling arguments to justify the lubrication approximation of the Navier–Stokes
equations for a thin fluid film of typical thickness H and lengthscale L � H flowing with
typical velocity U over a rigid surface.

A thin film of fluid of viscosity µ and thickness εh̄(z̄, t̄), where ε � 1 and z̄ is
the axial coordinate, coats the outside of a rigid cylinder of radius a. The free surface is
acted on by uniform surface tension γ, and gravity is negligible. Derive the dimensionless
evolution equation

∂h

∂t
+

∂

∂z

[
h3

(∂h

∂z
+

∂3h

∂z3

)]
= 0, (2)

giving the definition of the various dimensionless variables.

Find the (dimensionless) growth rate s of small disturbances of wavenumber
k to a film of uniform thickness h0, and sketch s(k). What is the most unstable
wavelength? Comment on the qualitative difference between this result and the most
unstable wavelength for the Rayleigh instability of a viscous cylinder of fluid.

After the instability has developed for a long time it is observed that almost all
the fluid collects into ‘collars’ around the cylinder, which are separated by very thin films
of fluid. Somewhat surprisingly, the collars are found to slide slowly along the cylinder,
leaving an even thinner film behind them than the film they are advancing over. Model
this phenomenon as follows:

Consider an approximate solution to (2) of the form h(z, t) = h(x), where x = z−ct,
h → h± as x → ±∞, 0 < h− < h+ � 1 and 0 < c � 1. Show that the (quasi-steady)
shape of a collar, where h = O(1), is given by

h = A(1 + cos x) + B . (3)

(Here B is assumed to be a small constant and A grows slowly at a rate c(h+ − h−).)

Near x = ±π there are small regions where the curvature changes rapidly to match
the edges of the collar to the uniform films ahead and behind. Show that it is possible to
rescale the variables in each of these regions in such a way that the leading-order equation
becomes H3H ′′′ = H − 1. Explain why this equation has, to within translations in X, a
unique solution H−(X) with H− → 1 as X → −∞ and a one-parameter set of solutions
H+(X;λ) with H+ → 1 as X → +∞.

If H− ∼ a−X2 + b− as X →∞ and H+ ∼ a+(λ)X2 + b+(λ) as X → −∞ show, by
matching to (3), that

c = (Ah+/2α)3/2, B = h+β and h− = (a−/α)h+,

where α = a+(λ0), β = b+(λ0) and λ0 is the unique solution to a+b+(λ) = a−b−.

Where does the energy required to sustain the motion come from?

[END OF PAPER]
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