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PAPER 73

LARGE-SCALE ATMOSPHERE-OCEAN DYNAMICS

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

Cartesian coordinates (x, y, z) are used with z denoting the upward vertical. The
corresponding velocity components are (u, v, w).

Unless stated otherwise, g is the gravitational acceleration, f0 is the Coriolis
parameter at some latitude and β is the latitudinal gradient of the Coriolis parameter.
N0 is the buoyancy frequency, assumed to be constant unless otherwise stated.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 The shallow-water system in a frame rotating about the vertical axis at rate 1
2f is

governed by the equations

ut + u.∇u + f × u = −g∇η

ηt +∇.((η +H)u) = 0

where u = (u(x, y, t), v(x, y, t), 0) is the velocity, f = (0, 0, f) and the thickness of the layer
is equal to H + η(x, y, t), where H is constant.

Assume that the perturbation thickness η is small enough that the equations may
be linearised about the state η = 0, u = (0, 0, 0). Show that the linearised potential
vorticity, vx−uy − fH−1η, is independent of time and, on the assumption that the initial
conditions are u = v = 0 and η = η0(x) at t = 0, derive the equation governing the time
evolution of η.

Making reference to this equation, briefly describe the adjustment from the initial
condition to a steady state, noting the properties of any waves that propagate during the
adjustment process.

Write down the equation for η in the steady state limit as t → ∞ and solve it in
the case

η0(x) = −h (x < −L)
η0(x) = hx/L (−L < x < L)
η0(x) = h (x > L)

where h is a constant. You may find it helpful to define the parameter α ≡ Lf/(gH)1/2.

Derive the corresponding expressions for u and v in the steady state and comment
on the dynamical balance. Sketch the variation of u, v and η with x in the limits α � 1
and α � 1 and comment on the significance of these limits. Make the magnitude of the
different quantities clear in terms of h, L, f and α.

For α� 1 evaluate the loss in potential energy ∆V between the initial state and the
final steady state and similarly the gain in kinetic energy ∆T . (Recall that the potential
energy per unit area is gη2/2H.) Why do you expect that ∆T/∆V < 1?
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2 The Boussinesq hydrostatic form of the primitive equations on a β-plane, including
the effects of a buoyancy forcing, take the form

ut + (u.∇)u− (f0 + βy)v = − 1
ρ0
p̃x, (1)

vt + (u.∇)v + (f0 + βy)u = − 1
ρ0
p̃y, (2)

ρ̃t + (u.∇)ρ̃+ w
dρs

dz
= r (x, y, z, t) (3)

ux + vy + wz = 0, (4)

−p̃z − gρ̃ = 0, (5)

where the buoyancy forcing is represented by the term on the right-hand side of (3). Note
that the actual density of the fluid is ρ0 + ρs(z) + ρ̃, where ρ0 is constant, and that p̃ is
the pressure perturbation relative to that in a hydrostatically resting state in which the
density is equal to ρ0 + ρs(z).

Starting from these equations, derive the corresponding form of the quasi-
geostrophic potential vorticity equation. (The equation that you derive should include
a term involving r.) State clearly any scaling assumptions required and approximations
made. You may find it useful to assume that the flow quantities vary on a horizontal
length scale L and a vertical length scale D.

A simple model of the response of the atmosphere, taken to be the half-space z > 0,
to long-period variations in heating, is to take r = r0e

−µz cos kx cosω0t, where r0, µ, k
and ω0 are all positive constants. Use the quasi-geostrophic potential vorticity equation
linearised about a state of rest to analyse the response to this heating. You may apply the
(artificial) boundary condition ψ = 0 at z = 0 and assume that the buoyancy frequency
N is constant in height.

[Hint: you may find it useful to note that cos kx cosω0t = 1
2Re{exp(ikx − iω0t) +

exp(ikx+iω0t)} and therefore to seek solutions of the form ψ(x, z, t) = Re{ψ̂1(z) exp(ikx−
iω0t) + ψ̂2(z) exp(ikx+ iω0t)}.]

In particular you should write down equations governing the vertical structure of
the disturbances and solve them. Justify carefully any boundary conditions that you apply
as z →∞. Comment on the difference between the cases ω0 < β/k and ω0 > β/k.
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3 Consider quasi-geostrophic Boussinesq flow on an f -plane, with constant Coriolis
parameter f0 and constant buoyancy frequency N0. Explain, without detailed derivation
of the quasi-geostrophic equations, why the leading-order approximation to the vertical
velocity w, is given by

w = −Dg

Dt

{
f0
N2

0

ψz

}
where ψ is the quasi-geostrophic streamfunction and Dg/Dt denotes the rate of change
following the geostrophic flow. Show that the appropriate boundary condition on ψ at the
rigid sloping boundary z = αy, where α is comparable to the Rossby number, is

Dg

Dt

{
f0ψz

N2
0

}
+ αψx = 0,

assuming that αy is small enough that the boundary condition may be linearised and
applied at z = 0.

A basic flow (u, v, w) = (Λz, 0, 0), where Λ is constant, is confined between rigid
boundaries z = αy (linearised to z = 0) and z = γy +D (linearised to z = D).

Show from the above, and the quasi-geostrophic potential vorticity equation, that
the equation governing the evolution of small-amplitude disturbances to this flow is

q′t ≡
(
ψ′xx + ψ′yy + ψ′zzf

2
0 /N

2
0

)
t
= 0 in 0 < z < D,

with

ψ′zt − Λψ′x +
N2

0α

f0
ψ′x = 0 on z = 0

and

ψ′zt + ΛDψ′zx − Λψ′x +
N2

0 γ

f0
ψ′x = 0 on z = D,

where disturbance quantities are denoted with primes.

By integrating ψ′xq′ over the domain, assuming periodic boundary conditions in x
and y, show that

d

dt

∫
dxdy

{
1
2ψ

′2
z|z=D

(Λf0 −N2
0 γ)

−
1
2ψ

′2
z|z=0

(Λf0 −N2
0α)

}
= 0.

Deduce that (
1− N2

0 γ

f0Λ

) (
1− N2

0α

f0Λ

)
> 0

is a necessary condition for instability.

Now consider the special case where γ = α. Consider disturbances of the form
Re{ψ̂(z)eik(x−ct)} and show that the dispersion relation for the non-dimensionalised phase
speed c̃ = c/ΛD is

c̃ = 1
2 ±

(
1
4 + α̃

cothµ
µ

+
α̃2

µ2

)1/2

,

where µ = N0kD/f0 and α̃ + 1 = N2
0α/f0Λ. (You will almost certainly find it useful to

introduce c̃, µ and α̃ at an early stage in your working.)

Deduce that these disturbances do not grow exponentially in time for α̃ ≥ 0 and
comment briefly on the relevance or irrelevance of the condition for instability derived
earlier.
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4 The Boussinesq f -plane form of the Eulerian-mean equations including momentum
flux and density flux as forcing terms are as follows,

ut − f0va = −(u′v′)y (1)

f0u = −
py

ρ0
(2)

ρg = −pz (3)
vay + waz = 0 (4)

ρt + wa
dρs

dz
= −(ρ′v′)y. (5)

Overbars in these equations indicate averages in x, primes indicate disturbance quantities,
i.e. departures from the x-average value; (va, wa) are the (y, z) components of the Eulerian-
mean flow, ρ is the departure of the density from the constant background value of ρ0,
and p the corresponding pressure anomaly.

Starting from these equations, derive the transformed Eulerian-mean equations.
Explain the role of Eliassen-Palm flux in the transformed Eulerian-mean equations and its
relation to Rossby-wave propagation. State and explain a corresponding ‘non-acceleration’
theorem. (Detailed derivation of the Eliassen-Palm wave-activity relation is not required.)

Consider the effect on the mean flow of propagating and dissipating Rossby waves
in the domain 0 < y < L, −∞ < z < ∞, with rigid walls at y = 0 and y = L.
Assume the waves give rise to a buoyancy flux ρ′v′ = sin(πy/L)F(z), where F(z) = −1
for z < 0 and F(z) = 0 for z > 0. Calculate and describe the resulting Eulerian-mean and
transformed Eulerian-mean circulations in the (y, z) plane as represented, respectively,
by streamfunctions X (y, z) and X ∗(y, z). You should clearly display the equations and
boundary conditions that govern each circulation, in as simple a form as possible, and
sketch the corresponding solutions.
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