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STRUCTURE AND EVOLUTION OF STARS

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

The notation used is standard and you are reminded of the equations of stellar
structure in the form:

dP

dr
= −Gmρ

r2
;

dm

dr
= 4πr2ρ;

dT

dr
= − 3κρLr

16πacr2T 3
;

dLr

dr
= 4πr2ρε;

P =
<ρT

µ
+

1
3
aT 4.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 A zero-age main-sequence model of the Sun is fully radiative. Its material behaves
as an ideal gas and has opacity

κ = κ0ZρT−3,

where κ0 is a constant, ρ and T are its density and temperature and Z is the mass fraction
of metals. The energy generation rate per unit mass is

ε = ε0X
2ρT 5,

where ε0 is a constant and X is the mass fraction of hydrogen. Show that, for small Z,
the mean molecular weight

µ ≈ 4
5X + 3

and that the luminosity L and central temperature Tc obey

L ∝ µ7

Z
and Tc ∝

µ5/4

X1/4Z1/8
.

Two such models of the Sun have the same luminosity L = L� but differ in
composition. The first has X = X1 = 0.7 and Z = Z1 = 0.02 while the second has
X = X2 and Z = Z2 = 0.01. Find X2 to one significant figure and determine which model
has the higher central temperature.

The energy released in burning a unit mass of hydrogen to helium is E0. Assuming
that the stars remain homogeneous, show that the luminosity varies with time t as

L(t) = L0

(
1− 10µ0L0t

E0M�

)− 7
8

,

where L0 and µ0 are the luminosity and mean molecular weight at t = 0.

[You may find it useful to know that 21/7 ≈ 1.1]
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2 In a plane-parallel grey atmosphere of negligible mass and containing no sources of
energy the optical depth τ is defined by dτ = −κρ dz, where κ(ρ, T ) is the total opacity
of stellar material of density ρ and at temperature T , z is the height in the atmosphere
and τ → 0 at large z. The equation of radiative transfer can be written in the form

cos θ
dI

dτ
= I − j

κ
, (∗)

where I(τ, θ) is the intensity of radiation in at optical depth τ at an angle θ to the z-axis
and j, the effective emissivity including scattering and spontaneous emission is isotropic
and so given by

j

κ
=

σT 4

π
,

where σ is the Stefan–Boltzmann constant. Integrate (∗) over a sphere and use the fact
that the flux F in the z direction is independent of τ to deduce that

4π
j

κ
=

∫
sphere

I(τ, θ) dΩ = 4πJ,

where J(τ) is the mean intensity.

Show that the form
I(τ, θ) = A(τ) + C(τ) cos θ

satisfies the Eddington closure approximation

cPr =
4
3
πJ

between radiation pressure Pr(τ), the speed of light c and the mean intensity, and is a
solution to (∗) if

dA

dτ
= C

and that
C =

3F

4π
.

Use the fact that there is no flux into the star at τ = 0,

Fin =
∫

inwardhemisphere

I cos θ dΩ = 0,

to find A(τ) and use the definition F = σT 4
e of effective temperature Te to deduce that

T 4 =
3
4
T 4

e

(
τ +

2
3

)
,

and that when τ = 0, T = T0 = 2−1/4Te.

In the atmosphere of a red dwarf the opacity obeys

κ = κ0P
α−1T 4−4β
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and radiation pressure is negligible. By considering hydrostatic equilibrium show that the
pressure P varies with temperature as

Pα =
2αg

3κ0T 4
0

(T 4β − T 4β
0 ),

where g is the surface gravity of the star.

Hence deduce that an appropriate surface boundary condition, for the stellar
interior, is

Pκ

g
=

4α

3β
(1− 2−β)

at the location where Lr = 4πσr2T 4, where Lr is the luminosity at radius r from the
centre of the star.
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3 A cataclysmic variable consists of a white dwarf of mass M1 and a low-mass main-
sequence companion of mass M2 in a circular orbit with separation a. The main-sequence
star is filling its Roche lobe and transferring mass to the white dwarf at a rate Ṁ1 ≈ −Ṁ2.
The mass ratio q = M2/M1 < 1. The hydrostatic and thermal equilibrium radius of the
main-sequence star can be approximated by

R2

R�
=

M2

M�
,

while for a suitable range of mass ratios the Roche-lobe radius RL obeys

RL

a
= 0.46

(
M2

M

) 1
3

,

where M = M1 + M2. Show that the period P of the binary is given by
P

P0
=

M2

M�

for some constant P0.

The spin angular momentum of the stars can be neglected. Show that the orbital
angular momentum is

J =
M1M2

M
a2Ω,

where Ω = 2π/P is the orbital angular velocity.

Find ṘL/RL as a function of Ṁ2/M2 when J̇ = 0 and compare this with Ṙ2/R2.
What would be the equilibrium response of the system to mass transfer if q < 4/3.

Describe briefly one mechanism that can lead to angular momentum loss (J̇ < 0)
and maintain mass transfer if q < 4/3.

Once a layer of hydrogen-rich material of mass δm ≈ 10−4 M� has accumulated on
the surface of the white dwarf thermonuclear reactions ignite in the degenerate material.
These expel the entire layer of mass δm from the system in a nova explosion lasting a
few hundred orbital periods. Comment on the effect of this on eccentricity and show
that the change in separation δa/a = δm/M and the change in Roche-lobe radius
δRL/RL = 4 δm/3M to first order in δm/M .

Mass transfer is interrupted and the main-sequence star responds by shrinking
inside its Roche lobe. Assuming that the rate of angular momentum loss −J̇ remains
constant until the next nova explosion, show, again to first order in δm/M , that the ratio
of the time spent detached td to the time spent semi-detached ts is

td
ts

=
2q

(4− 3q)(1 + q)
.

4 Describe the evolution of a 5M� star from the zero-age main sequence to the onset
of thermal pulses. Pay particular attention to the various energy generation mechanisms
and indicate timescales. Include an evolutionary track in a Hertzsprung–Russell diagram.

Without discussing the details of the thermally pulsing asymptotic branch, describe
the final stages of the evolution of such a star and indicate how these might differ if the
rate of mass loss were much lower than, or much higher than, expected.
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