

MATHEMATICAL TRIPOS Part III

Thursday 3 June, 2004 9 to 12

PAPER 58

APPLICATIONS OF DIFFERENTIAL GEOMETRY TO PHYSICS

Attempt **FOUR** questions. There are **seven** questions in total.

The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Define the Killing form B on the Lie algebra $\mathfrak{g} = \operatorname{Lie}(G)$ of a Lie group G. Give a condition on G that the Killing form B be non-degenerate (i.e. invertible). Explain how, in this case, one may endow G with a bi-invariant pseudo-riemannian metric and show that this metric is an Einstein metric.

Comment briefly, giving illustrations but no proofs, on the signature of the Killing form B and its relation to the topology of the group G.

2 Define the terms *orbit*, *stabilizer*, *transitive*, *simply transitive* and *multiply transitive* for the action of a group G acting on a manifold X. Show that if the action is multiply transitive, then X = G/H for some subgroup $H \subset G$. How is the subgroup H determined?

Show that the space of quantum states of an (n + 1)-state quantum system is complex projective space \mathbb{CP}^n . Show that $\mathbb{CP}^n \equiv U(n+1)/U(n) \times U(1)$.

Give a description of S^{2n+1} as an S^1 bundle over \mathbb{CP}^n .

3 Define a Poisson manifold $\{P, \omega^{\mu\nu}\}$ and derive the condition that the second rank antisymmetric contravariant tensor field $\omega^{\mu\nu}$ must satisfy in order that the associated Poisson bracket satisfies the Jacobi identity.

Define a symplectic manifold, and show that every symplectic manifold is a Poisson manifold.

Show, by means of an example based on the dual \mathfrak{g}^* of a Lie algebra \mathfrak{g} , that not every Poisson manifold, equipped with a Poisson bracket satisfying the Jacobi identity, need be a symplectic manifold.

Paper 58

3

4 The metric of three-dimensional Anti-de-Sitter spacetime AdS_3 may be written in globally static coordinates as

$$ds^{2} = -(1+r^{2})dt^{2} + \frac{dr^{2}}{1+r^{2}} + r^{2}d\theta^{2},$$

with both t and θ being periodic coordinates of period 2π . By means of the embedding into $\mathbb{E}^{2,2}$ given by

 $\begin{aligned} X^0 &= \sqrt{1+r^2} \sin t \,, \qquad X^4 &= \sqrt{1+r^2} \cos t \,, \\ X^1 &= r \cos \theta \,, \qquad X^1 &= r \sin \theta \,, \end{aligned}$

 $X = I \cos \theta, \qquad X = I \sin \theta,$

show that the metric coincides, up to a constant factor, with the Killing metric on $SL(2,\mathbb{R})$.

Show how SO(2,2) acts by isometries and construct a 2 : 1 homomorphism from $SL(2,\mathbb{R}) \times SL(2,\mathbb{R})$ to SO(2,2).

What can you say about the group SO(2,1)?

5 Define a principal fibre bundle and show that it admits a global right action of the structural group G. Show also that such a bundle admits a global section if and only if it is trivial.

Illustrate your answer by means of the bundle of pseudo-orthonormal frames of a pseudo-riemannian manifold.

In particular, show that SO(4, 1) is the bundle of orthonormal frames for four-dimensional De-Sitter spacetime dS_4 .

Given that S^3 admits a global frame field, does the bundle of pseudo-orthonormal frames for dS_4 admit a global section?

6 Let $\{M, g\}$ be a pseudo-riemannian manifold with a local pseudo-orthonormal basis for the tangent space \mathbf{e}_a and dual basis ω^a . Establish the equations

where $\nabla \mathbf{e}_a = \mathbf{e}_b \otimes \theta^b{}_a$, and $R^a{}_b$ is the curvature 2-form of the Levi-Civita connection.

How does $R^a{}_b$ change under change of basis?

7 Write a brief essay on integration on manifolds, giving applications to topological conservation laws and the gauge-invariant coupling of a p-brane to a (p+1)-form potential.

Paper 58