

MATHEMATICAL TRIPOS Part III

Thursday 27 May, 2004 1.30 to 3.30

PAPER 53

INTRODUCTION TO QUANTUM COMPUTATION

Attempt **THREE** questions.

There are **four** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

Here the top horizontal line represents a qubit and the bottom one an auxiliary physical system, U is a unitary operation $U \in SU(N)$, and $|u\rangle$ is an eigenvector of U, such that $U|u\rangle = e^{i\phi}|u\rangle$. The measurement on the qubit can be performed either in the $\{|0\rangle, |1\rangle\}$ basis or in the conjugate basis $\{|+\rangle, |-\rangle\}, |\pm\rangle = (|0\rangle \pm i|1\rangle)/\sqrt{2}$.

- 1. What are the probabilities $P_0(\phi)$ and $P_1(\phi)$ that the qubit initially in state $|0\rangle$ will be found respectively in states $|0\rangle$ and $|1\rangle$ at the output if it is measured in the $\{|0\rangle, |1\rangle\}$ basis? What are the corresponding probabilities $P_+(\phi)$ and $P_-(\phi)$ if the qubit is measured in the $\{|+\rangle, |-\rangle\}$ basis? Suppose you do not know the eigenvalue of $|u\rangle$ but can run the above network many times and perform measurements in the $\{|0\rangle, |1\rangle\}$ and the $\{|+\rangle, |-\rangle\}$ bases. How would you estimate $\langle u | U | u \rangle$?
- 2 Instead of a pure state, $|u\rangle$, the auxiliary system is prepared in a more general state described by the density operator

$$\rho = p_1 |u_1\rangle \langle u_1| + p_2 |u_2\rangle \langle u_n| + \ldots + p_N |u_N\rangle \langle u_N|, \qquad (1)$$

where $\{|u_k\rangle\}$ is an orthonormal set of eigenvectors of U with eigenvalues $e^{i\phi_k}$ and with probabilities $p_k \ge 0$ such that $\sum_k p_k = 1$. How would you estimate $\sum_{k=1}^N p_k e^{i\phi_k}$?

3. Explain how the network above can be used to estimate TrU.

3

2 The Fourier transform over the Abelian group $(\mathbb{Z}_2)^n$, also known as the Hadamard transform, is defined as

$$|x\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \cdot y} |y\rangle, \tag{2}$$

where $x, y \in \{0, 1\}^n$ and the operation $x \cdot y$ is defined as

$$x \cdot y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n \pmod{2}$$
(3)

1. Sketch the quantum network which effects the Hadamard transform and explain why it is often useful as the first operation in quantum algorithms.

Let $f : \{0,1\}^n \mapsto \{0,1\}^n$ be a 2-to-1 function such that f(x+s) = f(x) for some $s \in \{0,1\}^n$. In the network below the H operations denote the Hadamard transform on n qubits and the U_f operation represents a quantum evaluation of f; $|x\rangle|y\rangle\mapsto |x\rangle|y+f(x)\rangle$.

- 2. What is the state of the two registers right after the quantum function evaluation?
- 3. The second register is measured bit by bit in the computational basis and a binary string $k \in \{0,1\}^n$ is registered. What is the state of the first register after the measurement?
- 4. Subsequently the Hadamard transform is performed on the first register, followed by a measurement in the computational basis. The result is a binary string, z. Show that $z \cdot s = 0$.

5. Suppose the function f is presented as an oracle. How many calls to the oracle are required in order to find s? How does it compare with a classical algorithm for the same problem?

Paper 53

[TURN OVER

3 A qubit in a pure state $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$ is exposed to decoherence which can be described as

$$|0\rangle |R\rangle \longrightarrow |0\rangle |R_0\rangle, \qquad (4)$$

$$|1\rangle |R\rangle \longrightarrow |1\rangle |R_1\rangle, \qquad (5)$$

where $|R\rangle$, $|R_0\rangle$ and $|R_1\rangle$ are three normalized states of an environment.

1. Show that the density operator of the qubit evolves as,

$$|\Psi\rangle\langle\Psi|\mapsto (1-p)|\Psi\rangle\langle\Psi| + p \,\sigma_z|\Psi\rangle\langle\Psi|\sigma_z \tag{6}$$

and express p in terms of $\langle R_0 | R_1 \rangle$. This means that with the probability 1 - p the qubit is not affected by environment and with the probability p the qubit undergoes the phase-flip error.

The trace norm of an operator X is defined as

$$||X|| = \operatorname{Tr}\left(\sqrt{X^{\dagger}X}\right) \tag{7}$$

and the trace distance between two operators X and Y as

$$d(X,Y) = \frac{1}{2}||X - Y||.$$
(8)

2. What is the trace distance between the original state $|\Psi\rangle\langle\Psi|$ and this state after the decoherence?

Consider a quantum error correcting code which encodes a single qubit into three qubits and corrects for up to one phase-flip error. A qubit in state $|\Psi\rangle$ is encoded into a three qubit state which is then exposed to decoherence. Subsequently a decoding operation is performed which returns one qubit either in the original state $|\Psi\rangle$ or in $|\Psi\rangle$ modified by the phase-flip error.

The decoding operation can correct for up to one phase-flip error on any of the three qubits of the code.

3. What is the probability of successful recovery of the input state $|\psi\rangle$ and what is the density operator of the decoded qubit? How far, in terms of the trace distance, is the decoded qubit from the original state?

5

4 A quantum algorithm \mathcal{A} , which solves a certain problem in the complexity class NP, can be viewed as a unitary operation A on n qubits. The operator A acts in the 2^n dimensional Hilbert space spanned by the computational basis $|x\rangle$, such that x represents a binary string of length $n, x \in \{0, 1\}^n$. Let x = 0 denote a string x of n zeros. The action $A|0\rangle$ prepares the state $|\Psi\rangle$ which is a superposition of binary strings representing possible, not necessarily correct, outputs. It is known that a subsequent measurement in the computational basis provides a correct answer to the problem with the probability $p \ll 1$ and that $|\Psi\rangle$ can be written as

$$|\Psi\rangle = \sqrt{p} |\Psi_g\rangle + \sqrt{1-p} |\Psi_b\rangle, \tag{9}$$

where $|\Psi_g\rangle$ is a projection of $|\Psi\rangle$ on the subspace spanned by the binary strings corresponding to good answers and $|\Psi_b\rangle$ is a projection of $|\Psi\rangle$ on the subspace spanned by the binary strings corresponding to bad answers. Both $|\Psi_g\rangle$ and $|\Psi_b\rangle$ are normalized.

1. How many applications of \mathcal{A} followed by the measurement are required on average to obtain a correct answer.

Suppose you can construct V_0 , such that $V_0 | x \rangle = - | x \rangle$ if x = 0 and $V_0 | x \rangle = | x \rangle$ otherwise, and another quantum operation V which verifies the output of \mathcal{A} , as follows

$$V|x\rangle = \begin{cases} -|x\rangle, & \text{when } x \in \{0,1\}^n \text{ is correct} \\ |x\rangle, & \text{when } x \in \{0,1\}^n \text{ is not correct} \end{cases}$$
(10)

Furthermore you can run \mathcal{A} backwards, i.e. you can implement A^{\dagger} . Consider the operation

$$Q = -AV_0 A^{\dagger}V \tag{11}$$

- 2. Show that the subspace spanned by $|\Psi_g\rangle$ and $|\Psi_b\rangle$ is invariant under the action of Q and express $Q|\Psi_g\rangle$ and $Q|\Psi_b\rangle$ as linear superpositions of $|\Psi_g\rangle$ and $|\Psi_b\rangle$.
- 3. Show that after r applications of operator Q to the state $|\Psi\rangle$ we obtain

$$Q^{r}|\Psi\rangle = \cos((2r+1)\theta)|\Psi_{b}\rangle + \sin((2r+1)\theta)|\Psi_{q}\rangle, \tag{12}$$

where $\sin^2 \theta = p$.

4. How many times do you have to apply A or A^{\dagger} before you can perform a measurement and obtain a correct answer with probability at least 1 - p?