MATHEMATICAL TRIPOS Part III

Thursday 27 May, 2004 9:00 to 12:00

PAPER 44

QUANTUM FIELD THEORY

 $Attempt \ \mathbf{THREE} \ questions.$

There are **four** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Define the Lorentz group G. By considering Lorentz transformations close to the identity, show that there is a subgroup G_0 of Lorentz transformations whose elements L have the form

$$L = \exp\left(\frac{1}{2}\omega_{\rho\sigma}M^{\rho\sigma}\right)$$

where $\omega_{\rho\sigma}$ are parameters and $M^{\rho\sigma}$ are a set of constant 4×4 matrices. How many independent parameters are there?

The matrices $M^{\rho\sigma}$ may be chosen so that they satisfy the commutation relations

$$[M^{\rho\sigma}, M^{\tau\lambda}] = g^{\sigma\tau} M^{\rho\lambda} - g^{\rho\tau} M^{\sigma\lambda} + g^{\rho\lambda} M^{\sigma\tau} - g^{\sigma\lambda} M^{\rho\tau}$$

where $g^{\sigma\tau}$ is the Minkowski metric tensor. [You need not prove this.] Explain how one constructs a representation of these commutation relations, and hence of the group G_0 , acting on Dirac spinors.

Discuss the way that the requirement of Lorentz invariance constrains the structure of Lagrangian densities in scalar field theory. In a theory coupling a scalar field ϕ to a Dirac spinor field ψ , three possible terms in the Lagrangian density are $\partial_{\mu}\phi \ \partial^{\mu}\phi$, $\partial_{\mu}\phi \ j_{5}^{\mu}$ and $j_{5\mu} \ j_{5}^{\mu}$, where $j_{5}^{\mu} = \bar{\psi}\gamma^{\mu}\gamma^{5}\psi$ is the axial current. Explain, giving your reasons, whether these terms are compatible with Lorentz invariance.

2 State Noether's theorem for a Lagrangian field theory whose only fundamental field is a Lorentz 4-vector $A_{\mu}(x)$.

Consider pure electromagnetism, with A_{μ} the gauge potential. How does A_{μ} change under a gauge transformation? Define the field tensor $F_{\mu\nu}$ and show that the Lagrangian density

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

is gauge invariant. Why does a minus sign appear here?

Show that $A_{\mu} \to A_{\mu} + \alpha \partial_0 A_{\mu}$ (with α infinitesimal) is an infinitesimal symmetry of \mathcal{L} , and use Noether's theorem to find the conserved energy of the theory. An alternative infinitesimal symmetry is $A_{\mu} \to A_{\mu} + \alpha(\partial_0 A_{\mu} - \partial_{\mu} A_0)$. Use this to find an expression for the energy density which is gauge invariant. Comment on the interpretation of the extra term $-\alpha \partial_{\mu} A_0$.

Paper 44

- **3** Write brief notes on
 - a) Plane wave solutions of the Dirac equation,
 - b) Anticommutation relations for Dirac fields,
 - c) The particle number operator for a Dirac field,
 - d) Positrons.

[The Heisenberg field operator in the Dirac theory has the expansion

$$\psi(x) = \int \frac{d^3p}{(2\pi)^3 \sqrt{2E_{\mathbf{p}}}} \sum_{s} \left(a^s_{\mathbf{p}} u_s(p) e^{-ip \cdot x} + b^{s\dagger}_{\mathbf{p}} v_s(p) e^{ip \cdot x} \right)$$

with $p_0 \equiv E_{\mathbf{p}} = \sqrt{|\mathbf{p}|^2 + m^2}$.

4 Use the Feynman rules of QED to find the amplitude, to second order in the coupling e, for photon-electron elastic scattering. State carefully any conditions that the external photon momenta and polarizations should satisfy. [The complete QED Feynman rules need not be stated, only those relevant to the process here.]

Show that if the incoming photon has 4-momentum k and polarization 4-vector ϵ , then the scattering amplitude is unaffected if ϵ is replaced by $\epsilon + \alpha k$ (α a real constant). Discuss briefly the significance of this observation.

Sketch the diagrams, if any, that can contribute to the amplitude at third or fourth order in *e*. [You need not evaluate the diagrams.]