

MATHEMATICAL TRIPOS Part III

Tuesday 1 June, 2004 9 to 11

PAPER 29

POISSON PROCESSES

Attempt **TWO** questions. There are **three** questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2

1 Explain carefully what is meant by saying that the random sequence $(p_1, p_2, p_3, ...)$ has the Poisson-Dirichlet distribution with parameter θ . Show that, for any polynomial ϕ with $\phi(0) = 0$,

$$\mathbb{E}\left\{\sum_{n=1}^{\infty}\phi(p_n)\right\} = \theta \int_0^1\phi(x)x^{-1}(1-x)^{\theta-1}dx$$

What does this tell you about the distribution of p_1 ?

2 The positions of trees in a large forest can be modelled as a Poisson process Π of constant density λ on \mathbb{R}^2 . Each tree produces a random number of seeds having a Poisson distribution with mean μ . Each seed falls to earth at a point uniformly distributed over the circle of radius r whose centre is the tree. The positions of the different seeds relative to their parent tree, and the numbers of seeds produced by a given tree, are independent of each other and of Π . Prove that, conditional on Π , the seeds form a Poisson process Π^* whose mean measure depends on Π . Is the unconditional distribution of Π^* that of a Poisson process? Justify your answer.

3 A uniform Poisson process Π in the unit ball of \mathbb{R}^3 is one whose measure is Lebesgue measure (volume) on $B = \{(x, y, z) \in \mathbb{R}^3 ; r^2 = x^2 + y^2 + z^2 \leq 1\}$. Show that

$$\Pi_1 = \{r \; ; \; (x, y, z) \in \Pi\}$$

is a Poisson process on [0, 1] and find its mean measure. Show that

$$\Pi_2 = \{ (x/r, y/r, z/r) ; (x, y, z) \in \Pi \}$$

is a Poisson process on the boundary of B, whose mean measure is a multiple of surface area. Are Π_1 and Π_2 independent processes? Justify your answer.