

MATHEMATICAL TRIPOS Part III

Wednesday 2 June, 2004 9 to 11

PAPER 26

MODULAR FORMS

Attempt ALL questions. There are three questions in total. The questions carry equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 i) Define the spaces M_k , S_k of modular and cusp forms of weight k for the modular group $SL_2(\mathbb{Z})$. Assuming the dimension formula for M_k , show that every modular form with integral Fourier coefficients may be expressed as a polynomial in E_4 , E_6 and Δ with integral coefficients.

[You may assume any results about the Eisenstein series E_k and Δ that you require.]

ii) Show further that there exists a unique basis for M_k consisting of forms g_j $(0 \le j < d = \dim M_k)$ whose q-expansions are of the form

$$g_j = q^j + \sum_{n \ge d}^{\infty} c_n(j)q^n, \quad c_n(j) \in \mathbb{Z}.$$

Show also that if $f = \sum a_n q^n \in M_k$, then for all $n \ge d$,

$$a_n = \sum_{j=0}^{d-1} c_n(j)a_j.$$

iii) Let T_n be the n^{th} Hecke operator acting on S_k . Deduce that for every $n \ge 1$,

$$T_n = \sum_{j=1}^{d-1} c_n(j) T_j.$$

2 Define the Weierstrass \wp -function $\wp(z)$ associated to a lattice Λ . Show that it satisfies the differential equation $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$ where $g_2 = 60G_4(\Lambda)$, $g_3 = 140G_6(\Lambda)$ and

$$G_k(\Lambda) = \sum_{0 \neq \omega \in \Lambda} \frac{1}{\omega^k}.$$

Show also that if $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$, and $\omega_3 = -\omega_1 - \omega_2$ then

$$\wp'(z)^2 = 4 \prod_{i=1}^3 (\wp(z) - e_i)$$

where $e_i = \wp(\omega_i/2)$, and that $e_i \neq e_j$ for $i \neq j$. Deduce that $\Delta(\Lambda) = g_2^3 - 27g_3^2$ is never zero.

3 Write an account of EITHER

(i) the theory of Hecke operators for modular forms on $SL_2(\mathbb{Z})$;

OR

(ii) the theory of the theta functions $\vartheta_{\alpha\beta}(z,\tau)$.

Paper 26