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FUNDAMENTALS OF ATMOSPHERE-OCEAN DYNAMICS

Attempt THREE questions.

There are four questions in total.

The questions carry equal weight.

Clarity and explicitness of reasoning will attract more credit
than perfection of computational detail

(x, y, z) denotes right-handed Cartesian coordinates and (u, v, w) the corresponding
velocity components; t is time; the gravitational acceleration is (0, 0,−g) where g is
a positive constant; ẑ = (0, 0, 1) is a unit vector directed vertically upward.
The fluid is always incompressible. ‘Ideal fluid’ always means that buoyancy
diffusion can be neglected where relevant, as well as viscosity. N denotes the
buoyancy frequency of a stratified fluid.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 Write down the Boussinesq equations linearized about a state of rest with N =
N(z), for an ideal stably stratified, non-rotating fluid. Show that

∂E
∂t

+∇ · (pu) = 0 , (∗)

where

E = 1
2 |u|

2 + 1
2

σ2

N2
,

where u and σ denote the disturbance velocity and buoyancy acceleration, and p denotes
the disturbance pressure divided by the constant inertial mass density ρ00.

Starting from the same linearized equations, now taking N constant, and using
appropriately tilted coordinate axes or otherwise, derive the dispersion relation for a plane
progressive internal gravity wave. Verify that the same dispersion relation follows from
the equation

∇2ζtt +N2(ζxx + ζyy) = 0 . (†)

(You need not derive this equation.) Here subscripts denote partial derivatives, ζ is the
vertical component of the disturbance displacement field ξ, and x, y, z are the standard
coordinates with z vertical.

Show in a sketch how the u, ξ, σ, and p fields are distributed in space at a given
instant, for a wave whose phase velocity is directed downward and leftward. Find a formula
for the group velocity cg and show that pu = cgE , where the overbars denote averages
over a wavelength or period. Indicate the direction of cg in your sketch of disturbance
fields, and explain this direction in terms of the pattern of positive and negative signs in
the p distribution.

Two-dimensional internal gravity waves are generated by a moving boundary
z = a(T ) exp(ikx − iωt) (real part understood), where T = µt and where µ, k, and ω
are real positive constants, with µ � 1 and |ω| < N . The slowly-varying amplitude
a(T ) is zero for T 6 0 and increases smoothly to a constant, small positive value ε as T
increases from 0 to 1, then remains at ε for T > 1. Taking (†) as the starting point, show,
correct to leading order in µ, that ζ takes the form

ζ = a

(
T − Z

cg · ẑ

)
exp(ikx+ imz − iωt) ,

where Z = µz and where m is a constant to be determined, with careful attention
to its sign. Sketch the Z-dependence of the amplitude factor a at T = 2. Find the
corresponding expressions for u, σ, and p.

Show, either from your solution or from (∗), that the vertical integral of E increases
at a rate equal to ρ00

−1 times W , the mean rate of working by the boundary on the fluid,
per unit horizontal area.

By writing ξ = (ξ, 0, ζ) and using the formula ut = −
[
ξx u+ ζx w

]
t + O(µ2), or

otherwise, show that W is equal to minus the rate of change of mean-flow kinetic energy,
per unit horizontal area, measured in the alternative frame of reference in which the
boundary undulations are stationary.
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2 Write down the fully nonlinear Boussinesq momentum and mass-continuity equa-
tions for two-dimensional motion (∂/∂y = 0) of an ideal stably stratified, non-rotating
fluid. Derive the y-component of the corresponding vorticity equation in the form

∇2ψt + σx = ψx∇2ψz − ψz ∇2ψx ,

where ψ(x, z, t) is a streamfunction to be specified and σ is the departure of the buoyancy
acceleration from its background value. Subscripts denote partial differentiation. Write
down the fully nonlinear equation for σ, again using the streamfunction ψ.

Linearize the equations for ∇2ψ and σ about a background state in which the
buoyancy frequency N is a function of z, N = N(z), and in which there is a steady flow in
the positive x direction with velocity

(
ū(z), 0, 0

)
. Show that stationary wave disturbances

of the form ψ′ = ψ̂(z) exp(ikx) (real part understood) satisfy

ψ̂zz + m2(z) ψ̂ = 0 ,

where

m2(z) =
N2(z)
ū2(z)

− ūzz

ū
− k2 .

Find the general solution for ψ̂ in all cases in which the background state has
exponential profiles ū(z) = U0 exp(Mz) and N(z) = N0 exp(Mz), where U0, M , and N0

are positive constants. Briefly discuss whether the Rayleigh quotient∫ z2

z1

{(
N2(z)
ū2(z)

− ūzz

ū

)
ψ̂2 − ψ̂2

z

}
dz∫ z2

z1

ψ̂2dz

is well defined and equal to k2 for any subset of these solutions for which ψ̂z = 0 at z = z1,
taking care to specify any relevant restrictions on the values of U0, M , N0, and k.

Show that the full set of solutions has the property that ∇2ψ ∝ ψ, with a constant
of proportionality to be determined. Show that σ is not proportional to ψ except when
M = 0. Discuss whether any of the solutions satisfy the fully nonlinear equations as well
as the linearized equations.
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3 Write down the shallow-water equations in a frame of reference rotating with
constant angular velocity (0, 0, 1

2f), in the case of a gently undulating bottom boundary
z = b(x, y). Denote the layer depth by h(x, y, t) with h = h00 + ζ − b, so that ζ(x, y, t)
represents the elevation of the free surface above its undisturbed level z = h00. Derive
the vertical component of the vorticity equation from the momentum equations, and show
that Rossby’s potential vorticity qa/h is an exact material invariant, i.e. that

DH

Dt

(qa
h

)
= 0 , (∗)

where qa = f + ∂v/∂x− ∂u/∂y and where DH/Dt = ∂/∂t+ uH · ∇H , with uH = (u, v, 0)
and ∇H = (∂/∂x, ∂/∂y, 0) .

Using order-of-magnitude arguments and making appropriate assumptions about
small parameters, carefully derive the quasi-geostrophic counterpart to (∗), expressing
everything in terms of an appropriate streamfunction ψ(x, y, t).

Find ψ for the case of uniform steady flow uH = (U, 0, 0), where U is a positive
constant, and show that if b = −g−1fUy then h is constant. A low ridge

b̂ = b̂(x) =

 ε cos
x

L
, |x| < 1

2πL

0 , |x| > 1
2πL

is added (b = −g−1fUy + b̂), where L is a positive constant, and ε� h00. Show that
ψ changes by a function ψ̂(x) satisfying

d2ψ̂

dx2
− L−2

R ψ̂ = − f

h00
b̂(x) , with ψ̂ → 0 as |x| → ∞ ,

where LR is the Rossby length based on h00. (Continue to use quasi-geostrophic theory
and assume that the flow is steady, with uH = (U, 0, 0) far upstream.) Solve for ψ̂ and
find a formula for the shape y = y(x) of a typical streamline. Show this shape on a sketch
of the xy plane in the case L = 3LR.

Briefly discuss how the steady quasi-geostrophic flow might be set up from an
initial state in which uH = (u(x), 0, 0), with h = h00 far upstream and with

u(x) =

{
U

{
1− h−1

00 ε cos (x/L)
}−1

, |x| < 1
2πL

U , |x| > 1
2πL .

Include some brief mention of how the initial Rossby potential-vorticity distribution might
evolve, and of the way in which the flow might approach the state of geostrophic balance
assumed by the quasi-geostrophic solution.
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4 Write an essay on the concept of Rossby-wave propagation. You should discuss and
illustrate the generic properties common to all cases, internal and boundary-dependent,
such as the relation to potential-vorticity gradients, the scale dependence arising from
potential-vorticity inversion, and the lack of two-way phase propagation as contrasted
with other wave types. You should also mention the relevant parameter regimes and
orders of magnitude. Further aspects to bring in might include, for instance, (a) the
relation to the short-wave limit of the Eady dispersion relation, and (b) the simplest
model of potential-vorticity mixing due to Rossby-wave breaking, with its implications for
momentum transport.

[The Eady dispersion relation, relating complex phase speed c to horizontal

wavenumber |k|, is c = 1
2ΛH

{
1 ± γ−1

[
(γ − coth γ)(γ − tanh γ)

]1/2}
, where Λ is the

vertical shear of the basic flow, H is the vertical distance between the boundaries, and
γ = 1

2KH where K is the inverse Rossby height based on |k|.]
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