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1 Give an account of the Landau-Ginsberg(LG) theory of phase transitions which
should include a discussion of the following points:

(a) The idea of an order parameter;

(b) The distinction between first-order and continuous phase transitions and how
their occurrence is predicted in LG theory;

(c) The idea of critical exponents and how they may be derived;

(d) The features of a tricritical point and how it occurs in LG theory;

(e) The notion of critical dimension dc and why the predictions for critical exponents
in LG theory fail for dimension d less than dc.

For a system described by a single scalar field use LG theory to calculate two critical
exponents of your choice at an ordinary critical point.
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2 A spin model in D dimensions is defined on a lattice of spacing a with N sites and
with spin σr on the r-th site. The Hamiltonian is defined in terms of a set of operators
Oi({σ}) by

H(u, σ) =
∑

i

uiOi({σ}) ,

where the ui are coupling constants with u = (u1, u2, . . .). The partition function is given
by

Z(u, C, N) =
∑

σ

exp(−βH(u, σ)− βNC) .

Explain how a renormalization group (RG) transformation may be defined in terms
of a blocking kernel and state how a and N rescale in terms of the RG scale factor b.

The values of the parameter (u, C) after p blockings are denoted (up, Cp). The RG
transformation for u can be written as

up → up+1 = R(up) .

Write down the form of the corresponding RG transformation for Cp → Cp+1. What is
the physical interpretation of Cp?

Derive the RG equation for the free energy F (up, Cp) and explain how it may be
expressed in terms of a singular part f(u) which obeys the RG equation

f(u0) = b−pDf(up) +
p−1∑

j

b−jDg(uj) .

What is the origin of the function g(u) which determines the inhomogeneous part
of this transformation?

Interpret the behaviour of the RG equations in the neighbourhood of a fixed point
in terms of a rescaling of the couplings u and of the spins {σ}. Explain briefly the concept
of relevant and irrelevant operators.

By considering the behaviour of f(up) in the neighbourhood of a fixed point of the
RG equations explain how the critical exponents of a continuous phase transition in the
model may be calculated.

The Gaussian model in D dimensions for a real scalar field is defined by the
Hamiltonian

H =
1
2
(κ−1(∇φ(x))2 + m2φ2(x)) + hφ(x) ,

where κ and h are constants.

By defining a suitable thinning transformation show that the critical exponents α
and β are given by

α = (4−D)/2 , β = (D − 2)/4 .
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3 State what is meant by the correlation length ξ of a scalar field theory and explain
briefly why ξ diverges at a second-order phase transition.

A scalar field theory in 4− ε dimensions near to a critical point is described by the
Hamiltonian density

H(φ) =
1
2
∇φ(x) · ∇φ(x) +

1
2
m2(Λ, T )φ2(x) +

1
4!

g(Λ, T )φ4(x) + . . . ,

where T is the temperature and Λ is the ultra-violet cutoff. By requiring that the properties
of the theory be independent of the choice of Λ show that the dimensionless couplings (u, λ)
associated with (m, g) obey renormalization group flow equations, correct to lowest order
in ε, of the form

du2

db
= 2u2 +

Ωd

2(2π)d

λ

1 + u2

dλ

db
= ελ − 3

2
Ωd

(2π)d

λ2

(1 + u2)2
,

where Ωd is the area of a unit sphere in d dimensions, b = log(Λ0/Λ) and initial conditions
are given for Λ = Λ0.

Treating ε as a small positive parameter show that these equations have an infra-red
attractive fixed point at

λ∗ =
16π2ε

3
, u∗2 = − ε

6
.

Hence show that to lowest order in ε

ξ ∼ |T − Tc|−ν ,

where Tc is the critical temperature and ν = 1/2 + ε/12.

You may quote the rules of perturbation theory and results from the theory of the
renormalization group without derivation.
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