

MATHEMATICAL TRIPOS Part III

Monday 3 June 2002 9 to 11

PAPER 64

STATISTICAL FIELD THEORY

Attempt **THREE** questions

There are **three** questions in total

The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 Give an account of the Landau-Ginsberg(LG) theory of phase transitions which should include a discussion of the following points:
 - (a) The idea of an order parameter;
- (b) The distinction between first-order and continuous phase transitions and how their occurrence is predicted in LG theory;
 - (c) The idea of critical exponents and how they may be derived;
 - (d) The features of a tricritical point and how it occurs in LG theory;
- (e) The notion of critical dimension d_c and why the predictions for critical exponents in LG theory fail for dimension d less than d_c .

For a system described by a single scalar field use LG theory to calculate two critical exponents of your choice at an ordinary critical point.

A spin model in D dimensions is defined on a lattice of spacing a with N sites and with spin σ_r on the r-th site. The Hamiltonian is defined in terms of a set of operators $O_i(\{\sigma\})$ by

$$\mathcal{H}(\mathbf{u},\sigma) = \sum_{i} u_{i} O_{i}(\{\sigma\}),$$

where the u_i are coupling constants with $\mathbf{u} = (u_1, u_2, \ldots)$. The partition function is given by

$$\mathcal{Z}(\mathbf{u}, C, N) = \sum_{\sigma} \exp(-\beta \mathcal{H}(\mathbf{u}, \sigma) - \beta NC)$$
.

Explain how a renormalization group (RG) transformation may be defined in terms of a blocking kernel and state how a and N rescale in terms of the RG scale factor b.

The values of the parameter (\mathbf{u}, C) after p blockings are denoted (\mathbf{u}_p, C_p) . The RG transformation for \mathbf{u} can be written as

$$\mathbf{u}_p \rightarrow \mathbf{u}_{p+1} = \mathbf{R}(\mathbf{u}_p)$$
.

Write down the form of the corresponding RG transformation for $C_p \to C_{p+1}$. What is the physical interpretation of C_p ?

Derive the RG equation for the free energy $F(\mathbf{u}_p, C_p)$ and explain how it may be expressed in terms of a singular part $f(\mathbf{u})$ which obeys the RG equation

$$f(\mathbf{u}_0) = b^{-pD} f(\mathbf{u}_p) + \sum_{j}^{p-1} b^{-jD} g(\mathbf{u}_j).$$

What is the origin of the function $g(\mathbf{u})$ which determines the inhomogeneous part of this transformation?

Interpret the behaviour of the RG equations in the neighbourhood of a fixed point in terms of a rescaling of the couplings \mathbf{u} and of the spins $\{\sigma\}$. Explain briefly the concept of relevant and irrelevant operators.

By considering the behaviour of $f(\mathbf{u}_p)$ in the neighbourhood of a fixed point of the RG equations explain how the critical exponents of a continuous phase transition in the model may be calculated.

The Gaussian model in D dimensions for a real scalar field is defined by the Hamiltonian

$$\mathcal{H} = \frac{1}{2} (\kappa^{-1} (\nabla \phi(\mathbf{x}))^2 + m^2 \phi^2(\mathbf{x})) + h \phi(\mathbf{x}) ,$$

where κ and h are constants.

By defining a suitable thinning transformation show that the critical exponents α and β are given by

$$\alpha = (4 - D)/2$$
, $\beta = (D - 2)/4$.

3 State what is meant by the correlation length ξ of a scalar field theory and explain briefly why ξ diverges at a second-order phase transition.

A scalar field theory in $4-\epsilon$ dimensions near to a critical point is described by the Hamiltonian density

$$\mathcal{H}(\phi) = \frac{1}{2} \nabla \phi(\mathbf{x}) \cdot \nabla \phi(\mathbf{x}) + \frac{1}{2} m^2(\Lambda, T) \phi^2(\mathbf{x}) + \frac{1}{4!} g(\Lambda, T) \phi^4(\mathbf{x}) + \dots ,$$

where T is the temperature and Λ is the ultra-violet cutoff. By requiring that the properties of the theory be independent of the choice of Λ show that the dimensionless couplings (u, λ) associated with (m, g) obey renormalization group flow equations, correct to lowest order in ϵ , of the form

$$\frac{du^2}{db} = 2u^2 + \frac{\Omega_d}{2(2\pi)^d} \frac{\lambda}{1+u^2}$$

$$\frac{d\lambda}{db} = \epsilon\lambda - \frac{3}{2} \frac{\Omega_d}{(2\pi)^d} \frac{\lambda^2}{(1+u^2)^2} ,$$

where Ω_d is the area of a unit sphere in d dimensions, $b = \log(\Lambda_0/\Lambda)$ and initial conditions are given for $\Lambda = \Lambda_0$.

Treating ϵ as a small positive parameter show that these equations have an infra-red attractive fixed point at

$$\lambda^* = \frac{16\pi^2\epsilon}{3} , \qquad u^{*2} = -\frac{\epsilon}{6} .$$

Hence show that to lowest order in ϵ

$$\xi \sim |T - T_c|^{-\nu}$$
,

where T_c is the critical temperature and $\nu = 1/2 + \epsilon/12$.

You may quote the rules of perturbation theory and results from the theory of the renormalization group without derivation.