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1 Consider the solution of the modified Swift-Hohenburg equation

∂ψ

∂t
= µψ −

(
∂2

∂x2
+K

)2

ψ + ψ2, −1 < x < 1 : ψ =
∂2ψ

∂x2
= 0, x = ±1.

(i) Show that there are two families of linear eigenfunctions for all n ≥ 0, namely

ψj(x) = cos (n+ 1
2 )πx (j = 2n); ψj(x) = sin (n+ 1)πx (j = 2n+ 1).

which have steady-state bifurcations at µ = µj(K) (j = 0, 1, . . .). Find µj(K) and
determine µ∗, K∗ such that µ0(K∗) = µ1(K∗) = µ∗.

(ii) Show that the centre manifold at this point is two-dimensional, so that
ψ ≈ A(t)ψ0 + B(t)ψ1 + . . .. Use group theoretical arguments to give the normal form
equations. Show that the extended centre manifold, truncated at quadratic order, takes
the form

∂A

∂t
= λ1A+ a1A

2 + a2B
2 ,

∂B

∂t
= λ2B + a3AB

Determine λ1, λ2 as linear functions of µ − µ∗, K − K∗, and indicate, without detailed
calculation, how a1, a2, a3 might be found.

(iii) It is given that 8a1 = 10a2 = 5a3 > 0. Find all the steady state solutions of
the truncated system above and compute the location of any bifurcation points in (λ1, λ2)
space, indicating the type of each. Sketch the bifurcation diagram. Sketch also the solution
curves for A as a function of λ1, when λ1 = λ2 + ∆ (∆ constant), distinguishing between
positive and negative ∆. Show clearly any stable branches.
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2 Consider a steady-state bifurcation problem which has the symmetry of the
hexagonal lattice with respect to rotations and translations, but not reflections (this would
be appropriate, for instance, for convection in a rotating layer). It may be assumed that
the solutions may be taken as proportional to Aeik1·x +Beik2·x +Ceik3·x, where A,B,C
are complex amplitudes and k1,k2,k3 are the three fundamental lattice vectors with
k1 + k2 + k3 = 0. Consider the possible existence of steady solution branches in the form
of hexagons (A = B = C(real)) and rolls (A 6= 0(real), B = C = 0). Find the isotropy
subgroup and the fixed point subspace for each of these solutions, and show that the fixed
point subspaces are one-dimensional in each case. What does this say about the existence
of the branches? Use symmetry arguments to construct the normal form equations. Show
that when truncated at cubic order the normal form may be written

dA

dt
= µA+B∗C∗ − ν1|A|2A− (ν2 + δ)|B|2A− (ν2 − δ)|C|2A

dB

dt
= µB + C∗A∗ − ν1|B|2B − (ν2 + δ)|C|2B − (ν2 − δ)|A|2B

dC

dt
= µC +A∗B∗ − ν1|C|2C − (ν2 + δ)|A|2C − (ν2 − δ)|B|2C

with real coefficients µ, ν1, ν2, δ.

Using the truncated normal form above, find conditions for the stability of both
the roll and hexagon solutions as functions of µ, ν1, ν2, δ. Show in particular that when
δ 6= 0 and ν2 > ν1 > 0 the branch of hexagons can lose stability at a Hopf bifurcation,
while rolls are never stable if δ2 > (ν2 − ν1)2.

Without detailed calculation, sketch a possible phase portrait in the case that both
these solution branches are unstable (you may assume that the trajectory remains in the
invariant subspace in which A,B,C are real).
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3 Consider the evolution equation, for real A = A(x, t), −∞ < x <∞

∂A

∂t
= µ(x, t)A+ αA3 −A5 +

∂2A

∂x2
(∗)

where α > 0 is constant. This equation describes the envelope for a non-autonomous,
inhomogeneous pattern-forming bifurcation.

(i) Show that when µ = µ0 (constant) there are steady solutions satisfying A→ 0,
x→ −∞, A2 → C2 6= 0 as x→∞ only if µ0 = −3α2/16. Verify that in this case

A2 =
3α
4

(
1 +

3α
4

exp(−α
√

3
2

(x−X0))

)−1

≡ A2
0(x−X0) ,

where X0 is any constant. Show also that for any suitably well-behaved function R(x) the
identity ∫ ∞

−∞

∂A0

∂x

[
(µ0 + 3αA2

0 − 5A4
0)R+

∂2R

∂x2

]
dx ≡ 0

holds.

(ii) Now suppose that µ = µ0 + εν(x, T ), where ε� 1 and T = εt. Seek a solution
to (∗) in the form of a moving front, by writing

A = A0(x− X̂(T )) + εR(x, T ) ,

where εR(x, T ) is a small remainder term. By substituting into (∗), derive the equation
governing the front velocity

−dX̂
dT

∫ ∞

−∞

(
∂A0

∂x

)2

dx =
∫ ∞

−∞
ν(x+ X̂, T )A0(x)

∂A0(x)
∂x

dxz .

Find dX̂/dT explicitly in terms of X̂ and T when ν(x, T ) = Kδ(x + cT ), where δ is the
usual δ-function. Find conditions relating c and K which permit steady moving fronts
with dX̂/dT =const. Are these solutions stable? Explain what happens to the front when
these conditions are not met.

4 Write an essay on modulational instabilities of travelling wave patterns that arise
as Hopf bifurcations in an extended system. You should include:

Reduction of the problem to the complex Ginzburg-Landau equation near the bifurcation
point;

Discussion of the role of distant boundaries, and the need to use periodic boundary
conditions;

Determination of the stability properties of “flat” solutions (modes of optimum wave-
length);

Use of symmetry principles to derive the Kuramoto-Sivashinsky (KS) equation for long-
wavelength disturbances; and

Discussion of small- but finite-amplitude solutions of the KS equation with finite spatial
period P to determine the stability of modulated solutions.
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