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1 The normal form for a particular codimension-2 bifurcation is given by

ẋ = y,

ẏ = −λx+ κy − x3 − x2y,
(1)

where λ and κ are real parameters.

(a) Locate the equilibrium points of (1) and sketch the curves in the (κ, λ) plane along
which local bifurcations occur, classifying each bifurcation.

(b) Use the rescaling x = εu, y = ε2v, λ = ε2α, κ = ε2β, τ = εt to deduce ODEs for u
and v which, in the limit ε→ 0, have the conserved quantity H(u, v) = 1

2v
2 + α

2 u
2 + 1

4u
4.

Sketch contours of constant H in the (u, v) plane when α < 0. Give the value of H which
corresponds to the homoclinic orbits.

(c) By integrating around one of the homoclinic orbits for small ε, find the relation
between α and β, and hence between λ and κ, at the global bifurcation. Indicate this
curve on your sketch of the (κ, λ) plane from part (a).

(d) Compute the saddle index δ = −m−
m+

near the global bifurcation, where m+ > 0 >
m− are the eigenvalues of the linearisation at the relevant saddle point. Briefly describe
the dynamics near the global bifurcation in this case.

(e) Using the result of part (d) and the fact that exactly one of the Hopf bifurcations is
supercritical and the other is subcritical, sketch the phase portrait of (1) in the six regions
of the (κ, λ) plane which display qualitatively distinct behaviour.
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2 Consider the following system of ODEs:

u̇ = µu+ u2 − uv,
v̇ = λ(u2 − v),

(1)

where µ and λ are real parameters and λ > 0.

(a) Determine the location of all the equilibria of (1) and conditions for their existence.

(b) Describe the steady-state bifurcations that occur at µ = − 1
4 and at µ = 0 for fixed

λ. Sketch the appropriate bifurcation diagrams in the (µ, u) plane, indicating stabilities
in each case.

(c) Identify the equilibrium which undergoes a Hopf bifurcation (which you may assume
is supercritical) and find the location of the curve µ = µH(λ) along which this occurs.
Sketch this, and the locations of the steady-state bifurcations identified in part (b), in the
(µ, λ) plane. Find the codimension-2 bifurcation point.

(d) Near the codimension-2 point the dynamics are described by the normal form for
a Takens-Bogdanov bifurcation without symmetry:

ẋ = y,

ẏ = µ1 + µ2y + x2 − xy.

Recall that the analysis of this bifurcation involves the location of exactly one curve of
global bifurcations. Indicate a possible location (near the codimension-2 point) for this
curve of global bifurcations on your sketch from part (c) - you do not need to carry out
any calculations.

(e) Sketch the dynamics of (1) in the part of the (u, v) plane where u > 0 for the four
regions of qualitatively distinct behaviour around the codimension-2 point.

(f) Explain why the periodic orbit that is created at the Hopf bifurcation cannot be
destroyed at the global bifurcation when µ > µH and λ > 1, and sketch the behaviour of
trajectories in the part of the (u, v) plane where u > 0 for these parameter values.

(g) The periodic orbit is found to exist throughout the region µ > 0 and 1
4 < λ < 1

but does not exist when λ < 1
4 . Its disappearance on the line λ = 1

4 , µ > 0 is closely
related to the behaviour of Wu(0, 0) on this line. Near Wu(0, 0) the system (1) can be
well-approximated by the system

u̇ = µu+ u2 − uv,
v̇ = λu2.

(2)

First introduce the nonlinear time rescaling

d

dt
7→ u

d

dτ

which linearises (2). Integrate the resulting (inhomogeneous) linear system, using the
initial condition (u, v) = (h, v0) where both h and v0 are small and positive. Show that
the travel time (in the new variable τ) around the trajectory before u becomes small again
is approximately 2π√

4λ−1
when λ > 1

4 . Hence interpret the behaviour of Wu(0, 0) and the
periodic orbit, as λ decreases through 1

4 .
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3 Write an essay on complex dynamics created near global bifurcations in R3. You
should discuss both the ‘Lorenz’ scenario (in the symmetric case, where the dynamics is
invariant under the symmetry (x, y, z) → (−x,−y, z)) and the ‘Shilnikov’ scenario, using
the notes below.

(a) In the symmetric ‘Lorenz’ case take the linearisation around the saddle-point
(0, 0, 0) to be

ẋ = λ+x,

ẏ = λ̂y,

ż = λ−z,

where λ+ > 0 > λ− � λ̂, and let the two branches of the one-dimensional unstable
manifold Wu(0, 0, 0) intersect the plane Σ given by z = h at the points (−µ, ν, h) and
(µ,−ν, h) respectively. Derive a return map ΠL : Σ → Σ and show that it may be
approximated by the one-dimensional map

xn+1 = fL(xn) ≡ sgn(xn)(−µ+A|xn|δ) (1)

where δ = −λ−
λ+

, A is a constant and sgn(x) = x/|x|. You may take A to be positive.
Discuss the dynamics of the map (1) in the two cases δ > 1 and δ < 1.

(b) In the ‘Shilnikov’ case, take the linearisation around (0, 0, 0) to be

ẋ = λ−x− ωy,
ẏ = ωx+ λ−y,

ż = λ+z,

where ω > 0 and λ+ > 0 > λ−. Let the unstable manifold Wu(0, 0, 0) intersect the plane
Σ given by y = 0 at the point (r, θ, z) = (ρ, 0,−µ) in cylindrical polar co-ordinates. Derive
a return map ΠS : Σ→ Σ and show that it may be approximated by the one-dimensional
map

xn+1 = fS(xn) ≡ −µ+Axδ
n cos

(
ω

λ+
log(xn) + Φ

)
, (2)

where δ = −λ−
λ+

and A and Φ are positive constants. Discuss the dynamics of the map (2)
in the two cases δ > 1 and 1

2 < δ < 1.
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4 Two-dimensional thermal convection in a porous medium, in the presence of a
vertical magnetic field, is governed by the equations

∂

∂t
∇4ψ +

∂(ψ,∇4ψ)
∂(x, z)

= σ∇6ψ − σR∂
2ψ

∂x2
+ σζQ

∂

∂z
∇4A,

∂A

∂t
+
∂(ψ,A)
∂(x, z)

= ζ∇2A+
∂ψ

∂z
,

for the streamfunction ψ(x, z, t) and the magnetic flux function A(x, z, t). The Prandtl
number σ, magnetic Prandtl number ζ, Rayleigh number R and Chandrasekhar number Q
are all positive constants. R is proportional to the imposed temperature difference across
the fluid layer and Q is proportional to the square of the imposed magnetic field. The fluid
is confined to the region 0 6 x 6

√
3 and 0 6 z 6 1. The boundary conditions imposed

are ψ = ∇2ψ = 0 on all four walls, ∂A
∂z = 0 on z = 0, 1 and A = 0 on x = 0,

√
3.

(a) Use the three Fourier modes sinαx sinπz, sinαx cosπz, and sin 2αx to describe
the expected spatial structure of convection cells near onset, where α = π/

√
3, and hence

derive the ODEs
ȧ = −σa+ σra− σζqb,
ḃ = a− ζb− ac,
ċ = −ζc+ 3ab,

(1)

for the corresponding mode amplitudes a(t), b(t) and c(t), which approximate the dynamics
near the onset of convection. In (1) the notation q = 9Q/16π2 and r = 9R/64π4 has been
used and the new timescale τ = 4π2

3 t has been introduced.

(b) Show that local bifurcations occur in the ODEs (1) at r = 1 + q and r = 1 + ζ/σ.
Locate the codimension-2 point.

(c) Using either adiabatic elimination or a centre manifold reduction, reduce the ODEs
(1) to a single equation

ȧ = C1µa+ C2a
3, (2)

that describes the bifurcation at r = 1 + q when q < ζ/σ. C1 and C2 are constants to be
determined, and the parameter µ is proportional to r − 1 − q. Classify this bifurcation
fully and sketch the relevant bifurcation diagram in the (µ, a) plane.

(d) Explain why, from a physical point of view, (2) gives an unsatisfactory description of
the dynamics when r > 1+q. When three-dimensional effects are included an appropriate
ODE for the amplitude of convection is now

ȧ = C1µa− a2 + C2a
3 − a5. (3)

Briefly discuss the dynamics of (3), highlighting qualitative differences between its
dynamics and those of (2). You may find it helpful to sketch a bifurcation diagram
for (3).
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