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NON-NEWTONIAN FLUID DYNAMICS

Attempt TWO questions

There are three questions in total

The questions carry equal weight

You may not start to read the questions

printed on the subsequent pages until
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1 Explain what is meant by a viscometric flow of a simple fluid. Explain briefly why
the stress in such a flow is given as

σ = −pI + µA1 + (ψ1 + ψ2)A2
1 − 1

2ψ1A2,

where A1 and A2 are Rivlin-Ericksen tensors for the flow, and µ, ψ1 and ψ2 are functions
of γ̇ = [12A1 : A1]1/2. [Results from matrix algebra may be quoted without proof.] Explain
briefly the physical significance of the functions µ, ψ1 and ψ2.

Give a scaling argument to estimate for a lubrication flow the circumstances in
which the terms involving ψ1 and ψ2 may be neglected.

For a power-law fluid the viscosity is given as

µ = k|γ̇|n−1,

where k and n are positive constants. Such a fluid, having density ρ, coats the outside of
a circular cylinder of radius a that rotates steadily about a horizontal axis with angular
velocity Ω. Gravity acts vertically, and the shear stress at the free surface is zero. Let
h(θ) be the steady thickness of the fluid layer, with θ = 0 horizontal. Neglecting normal
stresses, use lubrication theory to find the shear stress throughout the layer, and determine
the total fluid flux, Q, in the layer as

Q = Ωah∓ n

2n+ 1

(
ρg| cos θ|

k

)1/n

h(2n+1)/n,

where the sign is chosen according as cos θ is positive or negative.

Hence show that there is a maximum possible steady flux, and find it.
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2 Under what circumstances is the behaviour of a simple fluid approximated by that
of a linear viscoelastic fluid?

The fluid stress in this limit is given as

σ(x, t) = −pI + 2
∫ t

−∞
G(t− t′)E(x, t′) dt′,

where G is the relaxation modulus. Define the terms complex viscosity and creep and
explain how each of these quantities may be determined from G.

A Maxwell fluid having density ρ and relaxation modulus

G(t) = G0e
−t/τ

occupies the planar region y > 0 bounded by a rigid wall along y = 0. For times t < 0 the
fluid is at rest. For times t ≥ 0 the wall is moved in the x−direction with constant velocity
U . Use Laplace transforms or otherwise to obtain the velocity in the fluid for times t > 0
in the form

u(y, t) =
U

2πi

∫
dp

p
exp{−[p(1 + pτ)ρ/G0τ ]1/2y + pt},

where the contour of integration should be specified.

By taking appropriate limits of the material parameters, find u(y, t) for both a
Newtonian viscous fluid and an elastic solid. [The Laplace transform of erfc(k/2

√
t) is

1
p exp(−k√p).]

Is it legitimate to apply linear viscoelasticity to this problem? Explain your answer
briefly.
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3 The pom-pom model for an incompressible entangled polymer melt gives the stress
σ(t) in terms of a molecular strain, λ(t), and a molecular orientation, B(t), as

σ = Gλ2B− pI,

with
B = A/trace(A),

where A evolves according to

DA
Dt

= A.∇v + ∇vT .A− 1
τ1

(A− I)

and λ evolves according to

Dλ

Dt
= λB : ∇v − 1

τ2
(λ− 1).

In these equations, G, τ1 and τ2 are positive constants.

(a) Does this constitutive equation describe a simple fluid? Briefly justify your answer.

(b) What are B and λ for a state of rest? By expanding about this state, obtain the
stress relaxation modulus of the fluid and the second-order-fluid constants.

(c) Consider finally the imposition of a steady, uniaxial extensional flow withi principal
rate of strain γ̇, starting from rest at t = 0. Show that if γ̇τ1 < 1

2 then A(t) tends to a
finite limit as t→∞, and that if γ̇τ1 > 1

2 then A(t) increases without bound. Show that
in either case B(t) tends to a finite limit as t→∞ to be determined.

Deduce that λ(t) remains bounded as t → ∞ only if γ̇ is less than a critical value
γ̇c which you need not determine. Find an expression for the steady extensional viscosity
of the fluid when both γ̇ < γ̇c and γ̇τ1 < 1

2 .
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