
MATHEMATICAL TRIPOS Part III

Friday 7 June 2002 9 to 11

PAPER 51

STOCHASTIC MODELS OF TRANSPORT AND MIXING

Attempt TWO questions

There are three questions in total

The questions carry equal weight

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 Consider the advection-diffusion problem

χt + U(t) sinmy χx = κ(χxx + χyy)

with χ(x, y, t) the concentration and κ and m constants. The boundary conditions on χ
are that χ is periodic in the y-direction, with χ(x, y, t) = χ(x, y+2π/m, t) and that χ → 0
as x → ±∞. U(t) is a periodic function.

Use either the method of moments, considering
∫∞
−∞ χdx,

∫∞
−∞ xχdx, etc, or the

homogenisation (multiple scales) technique, assuming that χ = χ(εx, x, y, ε2t, t) with ε
small, to show that at large times χ̄, where (̄.) denotes average in y, satisfies a diffusion
equation in x and t with diffusivity κe where

κe = κ + 1
2 〈U(t)g(t)〉 = κ +

κm2

2
〈g(t)2〉

where 〈.〉 denotes average over one time period and g is the time-periodic solution of
ġ + κm2g = U(t). Justify carefully the arguments that you use in either case.

Deduce κe when U(t) = U0 (constant).

Now consider the case U(t) =
∑∞

n=−∞ U1δ(t − nT ) where δ(.) is the Dirac delta
function and U1 is a constant. (The sum is over integer values of n.) Show that κe is now
given by

κe = κ +
U2

1

4T

(1− e−2κm2T )
(1− e−κm2T )2

.

(You should use the second expression for κe given above.)

Consider the limits κm2T � 1 and κm2T � 1 and carefully interpret the forms
for κe that you find in those limits.
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2 The concentration θ(x, t) of an advected scalar satisfies

θt + u.∇θ = 0,

where u(x, t) is the velocity field, x represents position and t time. Show that ∇θ satisfies
the equation

∇θt + (u.∇)∇θ = −(∇u)T .∇θ

where the ijth component of the tensor ∇u is ∂ui/∂xj . k(t) is defined as ∇θ evaluated at
a point X(t) following a fluid particle trajectory. Deduce that k(t) satisfies the equation

dk
dt

= −σ(t)T .k

where the tensor σ(t) is ∇u following the fluid particle, i.e. ∇u evaluated at X(t).

Suppose that the vertical component of velocity u3 = 0 and write down the
corresponding equations for k1, k2 and k3 (the components of k) in terms of the non-zero
components of σ(t). For simplicity assume that σ11 = −σ22 = a, σ12 = σ21 = b, where
a and b are constant in time. Integrate the ordinary differential equations for k1 and k2

to show that at large times k1 ' k0 cos φect and k2 ' k0 sinφect, where c =
√

a2 + b2, for
suitable chosen constants k0 and φ.

Now consider the following two cases:

Case I: σ13 and σ23 are constant in time.

Show that k3 increases exponentially at large times and that

α =
|k3|

(k2
1 + k2

2)1/2
→ |σ13 cos φ + σ23 sinφ|√

a2 + b2

as t →∞. What is the physical interpretation of α?

Now assume that a and b are independent Gaussian random variables with zero
mean and variance Γ2 and that σ13 cos φ + σ23 sinφ is another Gaussian random variable
with zero mean and variance Λ2.

Considering the long-time limit, evaluate, as a function of A, the probability that
α ≤ A and deduce that the probability density function for α is

pα(A) =
Λ2Γ

(Γ2A2 + Λ2)3/2
.

If a, b, σ13 and σ23 varied randomly in time on some time scale τσ and had statistics
as assumed above, what condition on τσ would be required for above form for the
probability density function for α to be a useful approximation?

Case II: σ13 and σ23 vary randomly and rapidly in time, so that σ13dt = gdW (1)

and σ23dt = gdW (2), where g is a constant and W (1) and W (2) are independent Wiener
processes. Deduce that at large times k3 satisfies the equation

dk3 = −k0gect cos φdW (1) − k0gect sinφdW (2) = −k0gectdW

(c =
√

a2 + b2 as above, and may be treated as a constant), with W another Wiener
process. Derive a stochastic differential equation for β = k3/

√
k2
1 + k2

2 = k3e
−ct/k0.
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Write down the corresponding Fokker-Planck equation for the probability density
function of β and integrate to show that the steady-state form of the probability density
function (given c) is

pβ(B; c) =
(

c

πg2

)1/2

exp(−cB2/g2).

(Note that β may take either positive or negative values.)

3 Consider the evolution of an advected scalar in a two-dimensional turbulent
incompressible flow, on the assumption that the scalar diffusivity is much smaller than
the momentum diffusivity, so that the minimum length scales in the scalar field are much
smaller than the minimum length scales in the velocity field. Justify considering the system

χt + (C(t).x).∇χ = κ∇2χ (∗)

where C is a tensor that is a random function of time and then averaging over all
realisations of C.

From (∗) derive equations for
∫

χdA and for the 2nd moment tensor Jij =∫
xixjχdA, where the integrals are taken over the infinite two-dimensional domain on

which (∗) applies and it may be assumed that χ decays rapidly for large |x|.

Consider solutions to (∗) of the form

χ(x, t) = f(t) exp(−xT B(t)x)

where B(t) is a symmetric matrix. Derive the relation between f(t) and B(t) and J(t)
(i.e. the matrix of components of the 2nd moment tensor, evaluated for this solution).

Discuss the statistical behaviour of the eigenvalues of J , e2ρ1 and e2ρ2 say, at large
times. Assume that in the initial condition the length scales are large enough such that
diffusion may be neglected and make it clear how diffusion affects the behaviour at large
times. (You need not give detailed mathematical derivations e.g. of probability density
functions, but results should be clearly stated.)

Describe briefly how these results may be used to describe the decay of a scalar in
a turbulent flow. Show that the µth moment 〈|χ(0, t)|µ〉 (µ > 0), where the expectation
〈.〉 is over all realisations of the flow, decays as e−γµt, where each γµ is a constant, and
give equations for γµ. Show that γµ may be independent of µ if µ is larger than some
critical value µ∗ and show also that, for µ < µ∗, γµ/µ is a decreasing function of µ.
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