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FUNDAMENTALS OF ATMOSPHERE–OCEAN DYNAMICS

Attempt THREE questions

There are four questions in total

The questions carry equal weight

Clarity and explicitness of reasoning will attract more credit
than perfection of computational detail

(x, y, z) denotes right-handed Cartesian coordinates and (u, v, w) the corresponding
velocity components; t is time; the gravitational acceleration is (0, 0,−g) where g is
a positive constant.
The fluid is always incompressible. ‘Ideal fluid’ always means that buoyancy
diffusion can be neglected where relevant, as well as viscosity. N denotes the
buoyancy frequency of a stratified fluid.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.



2

1 Starting from the Boussinesq momentum, mass-continuity and buoyancy equations
for two-dimensional motion of an ideal stratified, non-rotating fluid with constant N ,
linearize the equations about rest and derive the dispersion relation for an internal gravity
wave having the two-dimensional plane-wave structure exp(ikx+ imz − iωt).

Denote the complex amplitude of the disturbance buoyancy-acceleration field
σ(x, z, t) by σ̂, so that σ = Re{σ̂ exp(ikx + imz − iωt)} for the plane wave. Similarly,
denote by û = (û, ŵ), ξ̂ = (ξ̂, ζ̂), and p̂ the complex amplitudes of the disturbance velocity,
displacement and pressure fields u = (u,w), ξ = (ξ, ζ), and p. Derive formulae for û, ŵ,
ξ̂, ζ̂, and p̂ in terms of σ̂. Show in a sketch how the disturbance fields are distributed in
space at a given instant, in the case of a wave whose phase velocity is directed upward
and rightward.

Derive a formula for the group velocity cg in terms of N , k, and m. Show how the
phase and group velocities can be represented geometrically by the sloping sides of a right-
angled triangle, whose hypotenuse is horizontal with length proportional toN/(k2+m2)1/2.
Indicate the direction of cg in the sketch of disturbance fields.

Denote an average with respect to x by an overbar, and differentiation by suffixes.
You may assume that (

ξxu+ ζxw
)
t
+

(
ζxp

)
z

= νξx∇2u+ νζx∇2w (∗)

for waves subject to no buoyancy diffusion but to a viscous force ν(∇2u,∇2w) per unit
mass, where ν is constant. On the assumption that ν is small enough for the plane-
wave structure to remain a good approximation, show that the right-hand side is equal to
−ν(k2 +m2)

(
ξxu+ ζxw

)
. On the same assumption, show that ζxp = cg · ẑ

(
ξxu+ ζxw

)
,

where ẑ is the unit vertical vector. Deduce that if the wave field is steady, so that the time
derivative in (∗) vanishes, then |σ̂| must be proportional to exp

{
− 1

2ν(k
2 +m2)z/(cg · ẑ)

}
.

For the wave in your sketch, what conclusion can be drawn about the altitude z of the wave
source, and how could the same conclusion have been drawn directly from the formula for
cg ?

Comment briefly (a) on how the foregoing can be generalized to cases in which
dissipating waves propagate on a mean flow ū(z), and (b) on the implications for the
altitude range affected by the waves when ū(z) is such that Doppler shifting causes |cg · ẑ|
to decrease toward zero.
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2 Write down the shallow-water equations for the equatorial β-plane model, with
Coriolis parameter f = βy, where β = constant and y = 0 is the equator.

Linearize the equations about a basic state of rest relative to the earth with constant
layer depth h0. Make the equations dimensionless by rescaling the variables with respect
to horizontal length scale L = (c0/β)1/2 for the x and y dependence, vertical scale h0 for
the surface elevation, and time scale L/c0, where c0 = (gh0)1/2 is the gravity-wave speed
of the basic state.

Find the equatorially trapped waveguide modes, in which the disturbance veloc-
ity and surface-elevation fields take the form func(y) exp(ikx− iωt), with appropriate
functions of y for the different fields. Show first that there is an eastward-travelling
equatorially-trapped mode whose northward velocity component v = 0 everywhere, the
other disturbance fields being proportional to exp

(
− 1

2y
2
)

in dimensionless variables.

Show further that modes with v 6= 0 have v = v̂(y) exp(ikx − iωt) where the real-
valued function v̂(y) satisfies

d2v̂

dy2
+

(
ω2 − k2 − k

ω
− y2

)
v̂ = 0

in dimensionless variables. [Hint: eliminate u first and surface elevation second.] Deduce
that all such equatorially trapped modes have the structure v̂ ∝ Hn(y) exp(− 1

2y
2) and

satisfy the dispersion relation

ω2 − k2 − k

ω
= 2n+ 1 (n = 0, 1, 2, 3, ...) ,

where the Hermite polynomials H0 = 1, H1 = 2y, H2 = 4y2−2, H3 = 8y3−12y etc. You
may use the fact that the Hermite polynomials are defined such that H ′′

n−2yH ′
n +2nHn =

0.

Show that the dispersion relation factorizes when n = 0, and that only the root for
which

ω − k − 1
ω

= 0

corresponds to an equatorially trapped solution.
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3 A stratified, rotating, Boussinesq fluid has constant buoyancy frequency N , and
the frame of reference rotates with constant angular velocity (0, 0, 1

2f), f > 0. The fluid
occupies the half-space z > 0. You may assume that quasi-geostrophic theory applies,
such that the motion is governed by

DgQ

Dt
= 0 with Q =

[
f +

∂2ψ

∂x2
+

∂2ψ

∂y2
+

f2

N2

∂2ψ

∂z2

]
in the standard notation of the lecture notes, with velocity field

(u, v, w) =
{
−∂ψ
∂y

,
∂ψ

∂x
,− f

N2

Dg

Dt

(
∂ψ

∂z

)}
subject to the boundary condition w = 0 at z = 0. Find the linearized equation and
boundary condition governing small disturbances Q′(x, y, z, t), ψ′(x, y, z, t) to a steady
basic flow ū(z) = Λz, ψ̄(z) = −Λyz, where Λ is a positive constant. Deduce that
Q′ ∝ F (y, z)G(x− Λzt), where F and G are arbitrary functions.

When F ≡ 0 show that any disturbance streamfunction ψ′ that depends on x and
y according to ψ′ ∝ exp(ikx + ily), and is evanescent as z → ∞, must have the vertical
dependence

ψ′ ∝ ψ̂(z) ≡ exp(−µz) where µ =
N

f
(k2 + l2)1/2 , (∗)

regardless of the time-dependence of ψ′.

Show that propagating waves ψ′ ∝ ψ̂(z) exp(ikx+ ily − iωt) are possible solutions
provided that

ω =
fΛk

N(k2 + l2)1/2
. (†)

Explain in physical terms, using sketches or otherwise, how the wave propagation
mechanism works. Include some mention of how it depends on vortex-stretching on the
height scale µ−1.

A small but nonzero vertical velocity is imposed at the lower boundary, so that the
boundary condition on the vertical disturbance velocity w′ becomes

w′ = ε cos(kx+ ly − ω0t) at z = 0 ,

where ε is a small parameter. Using the result (∗), find solutions satisfying this boundary
condition, (a) when ω0 6= ω, and (b) when ω0 = ω, with ω given by (†).

Why does the solution grow without bound in case (b)?

4 Write an essay on the concept of potential-vorticity inversion, as illustrated by the
four basic dynamical models (two-dimensional vortex dynamics, non-rotating layerwise-
two-dimensional vortex dynamics, shallow-water quasi-geostrophic vortex dynamics, and
stratified quasi-geostrophic vortex dynamics).
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