

MATHEMATICAL TRIPOS Part III

Wednesday 5 June 2002 9 to 12

PAPER 4

PARTIALLY ORDERED GROUPS

Attempt FOUR questions

There are **six** questions in total The questions carry equal weight

NOTATION: In the questions, standard notation has been used: o-group is a totally ordered group, ℓ -group is a lattice-ordered group, ℓ -homomorphism is a group and lattice homomorphism, ℓ -subgroup is a sublattice subgroup, and prime subgroups are always convex ℓ -subgroups. Further, if G is an ℓ -group, then $G_+ = \{g \in G : g > 1\}$; \mathbb{R} stands for the additive group of real numbers with the usual ordering and \mathbb{Z}_+ denotes the set of all strictly positive integers.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. **1** (i) Let *P* be a convex ℓ -subgroup of an ℓ -group *G*. Prove that its set of right cosets is partially ordered by: $Pg \leq Ph$ iff $g \leq ph$ for some $p \in P$. Prove that this partial order is total iff (for any convex ℓ -subgroups C, D, if $C \cap D = P$, then C = P or D = P).

(ii) Prove that a lattice-ordered group G has all its values normal iff $|f||g| \leq |g|^2 |f|^2$ for all $f, g \in G$. Deduce that every o-group is normal-valued.

2 State and prove Ohnishi's condition for a group to have an order with respect to which it is an o-group. Deduce that a group can be made into an o-group iff all its finitely generated subgroups can. Hence show that every torsion-free Abelian group is an o-group for some order.

3(A) Prove that every ℓ -group is ℓ -isomorphic to a group of order-preserving permutations (with the pointwise ordering) of some totally ordered set.

(B) Prove that every 2-transitive ℓ -permutation group is *n*-transitive for all positive integers *n*.

(C) State the Trichotomy classification of primitive transitive ℓ -perm- utation groups. Which primitive transitive ℓ -permutation groups satisfy $|f||g| \leq |g|^2 |f|^2$ for all f, g. Justify your answer.

4 Let $G = Aut(\mathbb{R}, \leq)$.

(i) Let $f_1, f_2 \in G_+$ such that f_1, f_2 have supports that are bounded open intervals in \mathbb{R} . Prove that f_1 and f_2 are conjugate in G.

(ii) Now let $\alpha, \beta, \gamma \in \mathbb{R}$ with $\gamma < \alpha < \beta$. Let $a, f, g, h \in G$ with $f, g \in G_+$ each comprising one bounded bump and $\alpha < supp(a) < \beta < \alpha f, \alpha g$. Suppose further that $\gamma < supp(f) \cup supp(g) < \gamma h$. Prove that there is $b \in G$, commuting with a and h such that $b^{-1}fb = g$.

5 Let G be an Abelian o-group that is also a vector space over \mathbb{R} . Suppose that the set of convex subgroups of G (other than G) is precisely $\{C_n : n \in \mathbb{Z}_+\}$ where (i) $C_1 = \{0\}$, (ii) $\bigcup \{C_n : n \in \mathbb{Z}_+\} = G$, (iii) $C_n \subseteq C_m$ whenever $n \leq m$, and (iv) $C_{n+1}/C_n \simeq \mathbb{R}$ for all $n \in \mathbb{Z}_+$.

Prove directly that G can be ℓ -embedded in the Hahn group $V(\mathbb{Z}_+, \mathbb{R})$.

[Hint: The lemma used in the proof of the general Hahn Theorem can be established directly under the hypotheses (i) - (iv).]

6 (i) Can a two generator Abelian o-group G have more than three convex subgroups? Explain.

(ii) Describe the free Abelian ℓ -group on two generators and outline the construction. Is it isomorphic as a group to \mathbb{Z}^n for some $n \in \mathbb{Z}_+$? Explain.

(iii) Is the additive group of all real-valued functions from the half plane in \mathbb{R}^2 defined by $x \leq y$ ℓ -isomorphic to the free Abelian ℓ -group on two generators? Explain (quoting explicitly any theorems that you use).

(iv) Must an ℓ -homomorphic image of the free Abelian ℓ -group on two generators be Archimedean? Explain.