

MATHEMATICAL TRIPOS Part III

Friday 31 May 2002 1.30 to 4.30

PAPER 3

CONSTRUCTIVE GALOIS THEORY

 $Attempt \ \textbf{THREE} \ questions$

There are **five** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 (a) Let R be a unique factorisation domain with field of fractions \mathbb{F} and let P be a prime ideal of R. Explain how one can use reduction modulo P to investigate Galois groups over \mathbb{F} . Give an outline proof of the validity of this approach.

(b) Show that the Galois group of the polynomial $f(X) = X^5 + X^2 + 2X + 1$ over \mathbb{Q} is S_5 .

(c) Show that the Galois group of the polynomial

$$f(X) = X^5 + tX^2 + (t+1)X + 1$$

over $\mathbb{F}_2(t)$ is S_5 , where \mathbb{F}_2 is the field of order 2.

2 Write an essay on Hilbertian fields.

3 (a) Let \mathbb{F} an algebraically closed field of characteristic 0 and let \mathbb{E} be a finite Galois extension of $\mathbb{F}(t)$ with Galois group G over $\mathbb{F}(t)$. For any $p \in \mathbb{F} \cup \{\infty\}$ explain how to define the conjugacy class of G associated to p and the ramification index of \mathbb{E} at p. Prove that your constructions are well-defined.

(b) Let a(t) be a polynomial over \mathbb{C} , let $f(X) = X^2 - a(t)$ be an irreducible polynomial over $\mathbb{C}(t)$ and let \mathbb{E} be a splitting field for f over $\mathbb{C}(t)$. Show that \mathbb{E} has a branch point at $p \in \mathbb{C}$ if and only if p is a root of a(t) of odd multiplicity. By transforming $t \mapsto 1/t$, determine when \mathbb{E} has a branch point at ∞ .

4 (a) Define what it means for a ramification type [G, P, C] to be rigid. Show that for each rigid ramification type there is, up to $\mathbb{C}(t)$ -isomorphism, at most one finite Galois extension of $\mathbb{C}(t)$ of this type.

(b) Prove the existence of rigid triples of conjugacy classes in the symmetric groups S_n for $n \ge 3$.

(c) Let $g_1 = (12345)$, $g_2 = (12)(35)(46)$ and $g_3 = (25)(346)$. Show that the conjugacy classes of g_1, g_2 and g_3 form a rigid triple in S_6 .

5 Let $\mathbb{F} = \mathbb{F}_q(t)$ be the field of rational functions over the field of order q.

(a) Let $f(X) = X^{q^d} + a_{d-1}X^{q^{d-1}} + \ldots + a_1X^q + a_0X$ be a polynomial over \mathbb{F} with $a_0 \neq 0$. Show that $\operatorname{Gal}(f, \mathbb{F})$ is naturally a subgroup of GL(d, q)

(b) Show that $\operatorname{Gal}(X^{q^d} + X^q + tX, \mathbb{F}) \ge SL(d,q)$ if $d \ge 2$.

[You may assume that any subgroup of GL(d,q) which is 2-transitive on 1-spaces contains SL(d,q).]

(c) Let $G = \text{Gal}(X^{q^d} + X^{q^2} + tX, \mathbb{F})$. Show that if $d \ge 4$ is even then G contains a normal subgroup of index 2 normalising $SL(d/2, q^2)$.

Paper 3