

MATHEMATICAL TRIPOS Part III

Thursday 6 June 2002 1.30 to 4.30

PAPER 16

SYMPLECTIC GEOMETRY AND HAMILTONIAN SYSTEMS

Attempt **FOUR** questions There are **five** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 (a) Define the group of Hamiltonian diffeomorphisms.

(b) Let (M, ω) be a closed symplectic manifold such that $H^1(M, \mathbf{R}) = 0$. Show that the identity component of the group of symplectomorphisms coincides with the group of Hamiltonian diffeomorphisms.

2 (a) Define Hofer's metric ρ_{∞} and the displacement energy.

(b) Prove that the displacement energy of $S^{2n-2} \subset \mathbf{R}^{2n-1} \subset \mathbf{R}^{2n}$ with respect to the Hofer metric ρ_{∞} vanishes.

3 (a) Define the Liouville class of a Lagrangian submanifold L in \mathbb{R}^{2n} endowed with the canonical symplectic form. State the condition under which L is rational and define the invariant $\gamma(L)$ associated with L.

(b) Let L be a closed rational Lagrangian submanifold contained in \mathbf{R}^{2n} . Using that $e(L) \ge \gamma(L)/2$ show that Hofer's metric in \mathbf{R}^{2n} is nondegenerate.

4 (a) Show that the graph of a 1-form α on N is a Lagrangian submanifold of T^*N if and only α is closed.

(b) Consider the map $f: T^*N \to T^*N$ given by $f(q,p) = (q, p + \alpha(q))$ where $q \in N$ and $p \in T^*_q N$. Show that if α is closed then f is a symplectomorphism.

(c) Show that if α is exact then f is a Hamiltonian diffeomorphism.

(Hint: f is a Hamiltonian diffeomorphism if and only if $f^*\theta - \theta$ is exact, where θ is the canonical 1-form of T^*N).

5 Let *L* be a closed Lagrangian submanifold of \mathbf{C}^n endowed with the canonical symplectic form. Suppose that there exists a smooth map $h : (D^2, \partial D^2) \to (\mathbf{C}^n, L)$ such that $\overline{\partial} h = 0$ (i.e. *h* defines a holomorphic disc with Lagrangian boundary conditions). Show that if *h* is not constant then the Liouville class of *L* is nonzero.

Paper 16