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There are five questions in total

The questions carry equal weight
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1 (a) Define the group of Hamiltonian diffeomorphisms.

(b) Let (M,ω) be a closed symplectic manifold such that H1(M,R) = 0. Show that
the identity component of the group of symplectomorphisms coincides with the group of
Hamiltonian diffeomorphisms.

2 (a) Define Hofer’s metric ρ∞ and the displacement energy.

(b) Prove that the displacement energy of S2n−2 ⊂ R2n−1 ⊂ R2n with respect to the
Hofer metric ρ∞ vanishes.

3 (a) Define the Liouville class of a Lagrangian submanifold L in R2n endowed with the
canonical symplectic form. State the condition under which L is rational and define the
invariant γ(L) associated with L.

(b) Let L be a closed rational Lagrangian submanifold contained in R2n. Using that
e(L) > γ(L)/2 show that Hofer’s metric in R2n is nondegenerate.

4 (a) Show that the graph of a 1-form α on N is a Lagrangian submanifold of T ∗N if
and only α is closed.

(b) Consider the map f : T ∗N → T ∗N given by f(q, p) = (q, p + α(q)) where q ∈ N
and p ∈ T ∗q N . Show that if α is closed then f is a symplectomorphism.

(c) Show that if α is exact then f is a Hamiltonian diffeomorphism.

(Hint: f is a Hamiltonian diffeomorphism if and only if f∗θ − θ is exact, where θ
is the canonical 1-form of T ∗N).

5 Let L be a closed Lagrangian submanifold of Cn endowed with the canonical
symplectic form. Suppose that there exists a smooth map h : (D2, ∂D2) → (Cn, L) such
that ∂ h = 0 (i.e. h defines a holomorphic disc with Lagrangian boundary conditions).
Show that if h is not constant then the Liouville class of L is nonzero.
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