

MATHEMATICAL TRIPOS Part III

Tuesday 4 June 2002 1.30 to 3.30

PAPER 10

RAMSEY THEORY

Attempt **THREE** questions There are **four** questions in total The questions carry equal weight

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 Let c be a colouring of \mathbb{N} using (possibly) infinitely many colours, and let $m \in \mathbb{N}$. Given $x_1, \ldots, x_m \in \mathbb{N}$, let $e(x_1, \ldots, x_m)$ denote the equivalence relation \sim on $\{1, \ldots, m\}$ given by

$$i \sim j \iff c(x_i) = c(x_j), \quad 1 \leqslant i, j \leqslant m,$$

and define a (finite) colouring c' of \mathbb{N}^2 by setting

 $c'(a,d) = e(a, a+d, a+2d, \dots, a+(m-1)d), \quad a, d \in \mathbb{N}^2.$

By applying Gallai's theorem, deduce that there is an arithmetic progression of length m on which c is either constant or injective.

2 State and prove van der Waerden's theorem. Deduce that, if a_1, \ldots, a_n are non-zero rationals, then the matrix (a_1, \ldots, a_n) is partition regular if and only if some (non-empty) subset of the a_i has sum 0.

[No form of Rado's theorem may be assumed without proof.]

3 What is an *ultrafilter* on \mathbb{N} ? Prove that there exists a non-principal ultrafilter on \mathbb{N} . Define the topological space $\beta \mathbb{N}$, and prove that it is compact and Hausdorff.

Explain carefully how the operation + on $\beta\mathbb{N}$ is defined, and prove that + is associative and left-continuous.

State Hindman's theorem, and show how to deduce it from the existence of an idempotent for + on $\beta \mathbb{N}$. (You are not required to prove that an idempotent exists.)

[You may assume simple properties of ultrafilters and their quantifiers].

4 What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is *Ramsey*? Prove that every *-Borel subset of $\mathbb{N}^{(\omega)}$ is Ramsey.