

MATHEMATICAL TRIPOS Part III

Tuesday 12 June 2001 9 to 12

PAPER 5

TOPICS IN REPRESENTATION THEORY

Candidates should attempt **ALL** the questions.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 2

1 (a) Let \mathfrak{g} be a semisimple Lie algebra,

and $L(\lambda)$ the irreducible representation of \mathfrak{g} with highest weight λ .

State the Weyl character formula, briefly explaining the definition of each term in

 $\quad {\rm it.} \quad$

- (b) Assuming the Weyl character formula, prove the Weyl dimension formula.
- (c) Compute the character of the irreducible representation $L(\rho)$.
- 2 (a) Define the Lie algebra \mathfrak{so}_5 , and write down a maximal torus and the root space decomposition for \mathfrak{so}_5 .
 - (b) Let R be the roots of \mathfrak{so}_5 . Draw them, and identify a set of simple roots and positive roots. Describe the Weyl group explicitly.

Describe the root lattice Q, weight lattice P, fundamental weights $\{\Lambda_i\}$, and cone P^+ of dominant weights explicitly.

- (c) Compute the dimension of each irreducible representation of \mathfrak{so}_5 .
- (d) Draw the crystal for the irreducible representations $L(\Lambda_i)$, where Λ_i are the fundamental weights of \mathfrak{so}_5 .

Draw the crystal for the adjoint representation.

(Justify your answers.)

3

Let \mathbb{C}^3 be the standard representation of \mathfrak{sl}_3 , and $(\mathbb{C}^3)^*$ its dual.

What are the highest weights of these representations?

Let B and B^{\vee} be the crystals of \mathbb{C}^3 and $(\mathbb{C}^3)^*$ respectively. Draw the crystals for $B \otimes B$ and $B \otimes B^{\vee}$.

Write down the highest weights of each of the representations that occur in these tensor products.

Using the representation theory of $\mathfrak{sl}_2,$ prove that

$${n \brack k}$$

is a unimodal polynomial.

Here
$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]!}{[k]![n-k]!}$$
, where $[n]! = \frac{q^n - q^{-n}}{q - q^{-1}} \cdots \frac{q^2 - q^{-2}}{q - q^{-1}} \frac{q - q^{-1}}{q - q^{-1}}$

Paper 5

$$\mathbf{4}$$