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LARGE-SCALE ATMOSPHERE–OCEAN DYNAMICS

A distinction mark can be gained for complete and well-reasoned answers
to TWO out of the three questions. The questions are of equal weight.

Clarity and explicitness of reasoning
will attract more credit than perfection of computational detail.

(x, y, z) denotes right-handed Cartesian coordinates and (u, v, w) the corresponding
velocity components; t is time; the gravitational acceleration is (0, 0,−g) where g is
a positive constant.
The fluid is always incompressible, and always ideal in the sense that viscosity can
be neglected, and likewise buoyancy diffusion if relevant. N denotes the buoyancy
frequency of a stratified fluid.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Define ‘strictly geostrophic flow’. Prove the Taylor–Proudman theorem for such
flow, concerning ∂(p, u)/∂z where z is the coordinate in the direction parallel to ΩΩΩ =
(0, 0,Ω), the angular velocity of the frame of reference, and where p and u are appropriate
pressure and relative velocity fields.

State briefly (without justification) how the property of ∂(p, u)/∂z asserted by
the Taylor–Proudman theorem must be modified when the flow is confined between rigid
boundaries that are nearly but not quite perpendicular to ΩΩΩ and when the flow goes across
geostrophic contours. State briefly (again without justification) how the z-component of
vorticity must then behave, indicating how that behaviour is described by the vorticity
equation.

Assume now that the two rigid boundaries are exactly perpendicular to ΩΩΩ, and
spaced apart by a constant distance h, except in a central circular area x2 + y2 < a2 in
which the spacing is reduced by a small constant amount εh. Fluid flows through the
central area, the flow at large r2 = x2 +y2 being uniform and unidirectional, with velocity
(U, 0, 0). Assuming that the z-component of vorticity behaves as before, find the relative
vorticity field and show that the relative velocity field has streamfunction

ψ ∝

{
− 1

2r
2 (r < a),

a2(log a− 1
2 − log r) (r > a).

Find the constant of proportionality in terms of ε. Deduce the relative velocity field and
find the value of ε/U such that closed streamlines are on the point of appearing in the
relative velocity field.
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2 Linearize the shallow-water momentum and mass-conservation equations about a
state of relative rest and uniform depth h00, in a frame of reference rotating with angular
velocity (0, 0, 1

2f), where f is a positive constant. Deduce that the horizontal divergence
δ = ∇H · u = ∂u/∂x+ ∂v/∂y satisfies

∂δ

∂t
= fq − g∇2

Hζ

where ζ is the surface elevation and q the relative vorticity. Deduce also that

∂q

∂t
= −fδ

and that
∂

∂t

(
q

h00
− fζ

h2
00

)
= 0 .

Comment briefly on the significance of the quantity (f + q)/(h00 + ζ) for the nonlinear
shallow-water equations, and on how is it related to the last equation above.

Show that small disturbances with the plane-wave structure exp(ikx + ily − iωt)
satisfy the linearized equations provided that either ω = 0 or

ω2 = f2 + c20(k
2 + l2) ,

where c0 is a constant to be defined. Sketch ω against (k2 + l2)1/2 for this last relation and
comment briefly on the way in which the phase and group velocities vary when ω takes
values near and far from f . In the case of disturbances for which ω = 0, how are the q
and ζ fields related? In what qualitative way does the δ field differ from the q and ζ fields,
when ω = 0?

Briefly discuss what happens, according to the linearized equations, when the
system is started from relative rest with surface elevation ζ = εh00 exp(−x2/L2), where L
is a given constant and ε� 1.

3 Write an essay on quasi-geostrophic flow in a stratified, rotating system. Possible
points are

• brief motivation;

• scaling assumptions and small parameters;

• scale-analytic arguments: ‘thermal-wind relations’ and representation of the velocity
and buoyancy fields in terms of a geostrophic streamfunction ψ;

• simplification of the vorticity equation to describe the evolution of the motion with time;

• description of the evolution in terms of potential-vorticity advection and inversion;

• modification of Taylor-Proudman effects by stratification; Prandtl’s ratio of scales;

• the possibility of, and implications of, a horizontal gradient of the Coriolis parameter f .
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