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1 (i) Explain the principles of Lighthill’s elongated body theory for a slender fish
swimming at forward speed U , using small-amplitude undulations of its body. Show
in particular that the lateral hydrodynamic force per unit length exerted on the
water by the fish is

Fz(x, t) =
(

∂

∂t
+ U

∂

∂x

) [
m(x)

(
∂h

∂t
+ U

∂h

∂x

)]
,

where h(x, t) is the displacement of the fish centreplane, x is distance along the
fish, t is time and m(x) is a quantity to be defined. What is meant by the “recoil
correction”?

(ii) A slender fish of length L is gliding parallel to itself at speed U , and then curves and
straightens its spine once. The active bending can be represented by a centreplane
displacement

h0(x, t) = −α(t)(x− x̄)2, 0 6 x 6 L,

where x̄ is the centre of mass of the fish, and α(t) > 0 for 0 < t < T, α(t) = 0
otherwise. Find two simultaneous differential equations for the lateral displacement,
Z(t), of the fish’s centre of mass and for the angle, θ(t), through which the fish
rotates. [The coefficients of the equations will involve the fish’s body mass, Mb,
its moment of inertia about a vertical axis through the centre of mass, Ib, and the
integrals

Mj =
∫ L

0

m(x) (x− x̄)j dx, j = 0, 1, 2, 3.

]
Integrate the equations once to obtain first order coupled equations for θ(t) and for
γ(t) = Z(t) + U

∫ t

0
θdt.

Show that, after the manoeuvre, the fish will still be gliding parallel to itself and
that it will have turned through an angle given by

θ = 2U

∫ T

0

α(t)dt.

Discuss the principal limitation(s) of the above model.
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2 A dead, rigid spermatozoon sediments
in a horizontal shear flow. The sperm head is
a sphere of radius a; the tail is a cylinder of
length L and radius b (b� a� L). The whole
spermatozoon has a uniform density and its
mass exceeds that of the water it displaces by
m′; the centre of mass G is a distance h behind
the centre C of the sphere. The fluid far away
has horizontal velocity U∞ = αzê1, where α is
a constant, ê1 is a horizontal unit vector, and
z is measured vertically upwards. C is taken
to be instantaneously at z = 0; the axis of the
sperm tail lies in the vertical plane containing
ê1 and makes an angle θ with the vertical. We
seek to calculate the velocity U of C and the angular velocity Ω of the spermatozoon, using
resistive force theory with force coefficients KN (normal) and γKN (tangential), where
KN = 4πµ/σ and σ = O[ln(L/b)] = O(L/a). The drag on the sphere is −6πµaU, and the
torque on a rotating sphere is − 8

3πµa3 multiplied by the angular velocity relative to the
fluid.

Show that the velocity of a point on the tail at distance s from its point of
attachment to the sphere, relative to the fluid “far away” (i.e. a distance � b from
the point), has normal component

U · ĵ +
(
Ω + α cos2 θ

)
(a + s),

where ĵ is a unit vector in the normal direction (see diagram), and write down the
tangential component.

From the force balance in the ĵ-direction and the torque balance about C, derive
the following approximate expression for Ω, explaining all approximations made:

Ω ≈ 2β sin θ − α cos2 θ where β =
m′g

(KN L2

3 + 8πµaL)
. (1)

Deduce from (1) that there are two equilibrium orientations, only one of which is stable.
In the stable orientation, is the head lower or higher than the far end of the tail?

Calculate the corresponding expressions for U · î and U · ĵ (̂i is parallel to the sperm
tail). If the organism is sedimenting in its equilibrium orientation, does increasing the
shear rate α increase or decrease the vertical velocity?
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3 A suspension of spherical, bottom-heavy, micro-organisms (cells) occupies a cham-
ber of depth h. The swimming direction of a cell, represented by the unit vector p̂, is given,
deterministically, by a balance between viscous and gravitational torques; randomness in
the cells’ swimming is modelled by means of an isotropic cell diffusivity D. Explain every
term in the following conservation equation:

∂n̄

∂t̄
= −∇̄ ·

[
n̄(ū + Vcp̂)−D∇̄n̄

]
,

where n̄(x̄, t̄) is the number of cells per unit volume and an over-bar represents a
dimensional variable. Justify the neglect of an individual cell’s settling velocity. Also write
down and explain the equation relating p̂ to the local fluid vorticity, ω̄ = ∇̄∧ū. Given
that the suspension as a whole behaves like a Newtonian fluid with constant viscosity,
state the other equations that are needed for an analysis of the motion, explaining any
additional notation.

Calculate the steady-state distribution of cells when the suspension as a whole is
at rest, showing that

n̄ = n̄0(z̄) = N̄0e
Vcz̄/D,

where z̄ is the vertical coordinate, measured upwards from the bottom of the chamber.
What is the relationship of the constant N̄0 to the average cell concentration N̄00?

Analyse the linear stability of this steady state: non-dimensionalise the variables
using N̄0 as the scale for n̂, h as the scale for lengths, D/h for velocities and h2/D for
time, and assuming that perturbations to the steady state have order of magnitude ε and
real horizontal wave number vector (l, m, 0), so that, for example,

n(x, y, z, t) = n0(z) + εN(z) exp[σt + ilx + imy],
w(x, y, z, t) = εW (z) exp[σt + ilx + imy]

etc. Here variables without the overbar are dimensionless, w is the vertical component
of the dimensionless fluid velocity u, and σ is the (possibly complex) growth rate. Show
that, to first order in ε, the governing equations reduce to(

d2

dz2
− β

d

dz
− k2 − σ

)
N = −βeβz

[
G

(
d2W

dz2
− k2W

)
−W

]
(1)

(
d2

dz2
− k2 − σ

Sc

) (
d2W

dz2
− k2W

)
= −R

β
k2N, (2)

where k2 = l2 + m2, β = hVc/D, G = BD/h2, Sc = ν/D and

R =
βh3υ∆ρgN̄0

ρνD

(where B = gyrotactic reorientation time, υ = cell volume, (ρ + ∆ρ) = cell density, ρ =
water density, g = gravitational acceleration, ν = fluid kinematic viscosity). Write down
the boundary conditions to be satisfied by N and W , given that there are rigid boundaries
at z = 0, 1.

Now investigate long wavelength disturbances in very shallow chambers, for which
β � 1. Assume that the scalings as β → 0 are k = βα, σ = β2σ2, G = β−1G−1,
R =

∑∞
j=0 βjRj , N =

∑∞
j=0 βjNj(z), W =

∑∞
j=1 βjWj(z) and expand equations (1) and
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(2) in powers of β. Find N0 and W1 and show, by integrating the O(β2) term from (1)
between z = 0 and z = 1, that

α2 + σ2 = −
∫ 1

0

W1dz.

Deduce that

σ2 = α2

(
R0

720
− 1

)
.

What does this theory tell you about the onset of bioconvection in shallow chambers?
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