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1 The annular region between two concentric rigid spheres of radii a and b (with
b > a) is filled with fluid of viscosity µ. The outer sphere is held stationary, while the
inner sphere is made to rotate with angular velocity Ω.

Assuming that inertia is negligible, use the Papkovich-Neuber representation

u = ∇(x ·Φ)− 2Φ , p = 2µ∇ ·Φ

to determine the fluid velocity. [Hint: Choose Φ as a linear combination of two simple
vector harmonic functions.]

Show explicitly that your solution gives p = 0. Explain how this result could also
have been obtained without detailed calculation from simple properties of Stokes flow.

Calculate the stress field in the fluid. Deduce the couple G that must be applied
to the inner sphere to maintain the motion.

What is the condition that inertia is indeed negligible for the case b� a? Explain
briefly why this is not the appropriate condition for the case b− a� a.

State the Minimum Dissipation Theorem for Stokes flow, making it clear which
flows are compared by the theorem.

A number of force-free, couple-free rigid particles are added to the fluid between
the spheres, but the concentric position and relative angular velocity Ω of the inner sphere
are maintained by application of the necessary force and couple to the inner sphere. Show
that the component of the couple in the direction of Ω is increased, being careful to explain
each step of the argument.
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2 A vertical planar sheet of very viscous fluid of density ρ and viscosity µ undergoes
extension. With respect to Cartesian axes, the sheet occupies − 1

2h(z, t) ≤ x ≤ 1
2h(z, t).

There is no flow or variation in the y-direction, so that the velocity u(x, z, t) = (u, 0, w).
Gravity acts in the positive z-direction and surface tension is negligible. The sheet is
surrounded on both sides by inviscid fluid of density ρa in which there is a hydrostatic
pressure gradient pa(z) = p0 + ρagz.

Assuming that ∂h/∂z � 1, explain why w is approximately independent of x and
derive equations for u(x, z, t) and σxx. Deduce that σzz = 4µ(∂w/∂z)− pa(z).

Draw a diagram to show all the forces acting on a fluid slice of length δz and varying
width. Deduce that

4µ

h

∂

∂z

(
h

∂w

∂z

)
+ (ρ− ρa)g = 0 .

Use conservation of mass to obtain another relationship between h(z, t) and w(z, t).

Now let ρ = ρa (or, equivalently, suppose that gravity is negligible). At t = 0
the sheet has length 2L0 and thickness h0(z). For t > 0 the sheet is stretched to length
2L(t) by pulling on the ends at z = ±L(t) with equal and opposite forces ±F (t) (per
unit width in the y-direction). Let z0(z, t) denote the initial (t = 0) position of the fluid
element which is at position z at time t. For example, z0(L, t) = L0. You may assume
that z0(0, t) = 0.

By considering the evolution of a fluid element, show that

h(z, t) = h0(z0)−∆(t) where ∆(t) =
1
4µ

∫ t

0

F (t′) dt′.

Use conservation of mass to express
∂z0

∂z
in terms of h and h0. Deduce that

z = z0 +
∫ z0

0

∆(t) dz′0
h0(z′0)−∆(t)

.

Find L as a function of ∆ when h0(z) = H(1+k2z2), where H and k are constants.

[Note that
∫

dx

a2 + x2
=

1
a

tan−1 x

a
.]

If F is constant show that L becomes infinite after a finite time t∗, and determine
t∗.

Show also that L ∼ A(t∗ − t)α as t → t∗, and find the constants A and α for the
two cases k 6= 0 and k = 0. Comment briefly on why the values of α differ between the
cases and explain why A does not depend on L0 for k 6= 0.
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3 A thin film of viscous fluid of thickness h(x, t) lies between a hot planar rigid
boundary z = 0 and a cold inviscid environment. The temperature T (x, z, t) of the fluid
satisfies

DT

Dt
= κ

(
∂2T

∂x2
+

∂2T

∂z2

)
in 0 < z < h(x, t) , (1)

T = T0 at z = 0 and − κ
∂T

∂z
= α[T − (T0 −∆T )] at z = h(x, t) ,

corresponding to a fixed boundary temperature T0 and conductive cooling to an environ-
mental temperature T0 −∆T . Here α and κ are constants.

Find the steady temperature distribution T (z) when h is uniform and the fluid
velocity u is zero. Show that if αh/κ� 1 then

T (h) ≈ T0 −∆T
αh

κ
. (2)

Use scaling on the terms in (1) to show that (2) still holds when h varies on a lengthscale
L and the x-component of u has typical magnitude U , provided that ε2 ≡ (h/L)2 � 1
and Pe ≡ Uh2/(κL)� 1.

The fluid has a temperature-dependent surface tension γ(T ) = γ0 + γ′(T − T0),
where γ0 > 0 and γ′ < 0 are constants. The other properties of the fluid are independent
of temperature, and gravity is negligible. Assuming that the surface temperature is given
by (1), use lubrication theory to show that

∂h

∂t
+

∂

∂x

(
γ0

3µ
h3 ∂3h

∂x3
− γ′∆Tα

2κµ
h2 ∂h

∂x

)
= 0 . (3)

[Justification of the approximations in lubrication theory is not required. You may assume
that the surface curvature is approximately ∂2h/∂x2, but the use of γ0 in the second term
instead of γ(T ) should be justified by a scaling argument.]

Give a brief physical explanation why the second and third terms respectively cause
perturbations to a uniform film thickness to decay and to grow.

Equation (3) can be reduced to the dimensionless form

Hτ + (H2HX)X + (H3HXXX)X = 0 (4)

by defining H = h/ĥ, X = εx/ĥ and τ = t/t̂. Find the timescale t̂ and aspect ratio ε.

Obtain and sketch the dispersion relationship s(k) for small disturbances of the
form H = 1 + δ exp(sτ + ikX) with δ � 1. What is the most unstable wavenumber?

Show that steady solutions of (4) with zero net flux satisfy

1
2H2

X + V (H) = E,

where V (H) = H(lnH − 1) and E is a constant, provided that ĥ has been chosen so that
H = 1 when HXX = 0.
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4 Define the Darcy velocity u and the pore velocity v for flow in a random porous
medium. State the relationship between these velocities and the porosity φ? State the
condition of incompressible flow, when φ is independent of time but varies with position.
What is the average velocity of a fluid interface within the medium (neglecting any effects
of dispersion)?

An impermeable plane, inclined at angle θ to the horizontal, is overlain by a porous
medium with porosity φ(z) = Pzα−1 and permeability k(z) = Kzβ−1, where P , K, α and
β are positive constants and z is the perpendicular distance to the impermeable plane. Let
x and y be the corresponding down-slope and cross-slope coordinates.

Use a lubrication-like approximation to show that gravity-driven flow over the plane
through the porous medium of a thin layer of fluid of slowly varying thickness h(x, y, t) is
described by the equation

∂hα

∂T
+

∂hβ

∂X
=

∂

∂X

(
hβ ∂h

∂X

)
+

∂

∂Y

(
hβ ∂h

∂Y

)
, (1)

where X = x tan θ, Y = y tan θ and T = t(αρgK sin θ tan θ)/(βµP ). The fluid density and
viscosity are ρ and µ, and the pressure is constant in the region above the fluid layer.

(i) Consider steady flow from a point source at the origin, which feeds a down-slope
current with constant flux and finite cross-slope width YN (X). Sufficiently far down-slope,
YN � X.

By making suitable approximations and scaling estimates, show that YN ∝ Xγ and
find γ. [You do not need to calculate the detailed similarity solution.]

(ii) Now consider time-dependent flow for the case α = β = 1 (constant porosity
and permeability). What is the form of (1) after the variable transformation τ = T ,
ξ = X − T , η = Y ?

Consider the release of a fixed volume V of fluid at x = y = 0 at t = 0. Show that

V = P tan2 θ

∫
h dξ dη .

Derive the detailed axisymmetric similarity solution for h.

[In plane-polar coordinates ∇2f(r) =
1
r

∂

∂r

(
r
∂f

∂r

)
.]

[END OF PAPER]
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