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Section A

1 Consider the flow of a fluid of constant density ρ1 along a horizontal channel of
varying width b(x). The ambient fluid has density ρ0.

(a) State the Boussinesq assumption and the conditions required for shallow water
flow. By considering fluxes of mass and momentum through a control volume, or
otherwise, derive the single-layer shallow water equations for an inviscid fluid, and
show that the system is hyperbolic. Determine the characteristics and the equations
describing variations in the flow along the characteristics.

(b) A volume of fluid V is released in a channel of unit width. The channel is closed
at x = 0. Sketch the flow that develops, indicating the key features of the flow.
Draw also an x − t diagram to illustrate the propagation of information and any
key transitions the flow undergoes.

(c) At late time, the gravity current will tend towards an exact solution of the
shallow water equations where the depth and velocity may be written as h(x, t) =
hf (t)H(x/L) and u(x, t) = uf (t)U(x/L), where L = L(t) is the length of the
current, uf = dL/dt, H(1) = 1 and U(1) = 1. Show that L dhf/dt = −hf dL/dt
and state a suitable boundary condition for the front. Determine the complete
solution. (Hint: rewrite the shallow water equations in terms of time t and the
similarity variable η = x/L.)
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2 Small amplitude perturbations to an inviscid, non-diffusive incompressible fluid
with buoyancy frequency N(z), at rest in the mean, satisfy

∇.u = 0,
∂σ

∂t
= −wN2 and

∂u
∂t

= − 1
ρ0
∇P + σẑ,

where u = (u, v, w) is the velocity, ẑ the vertical unit vector (positive upwards), σ is the
perturbation to the mean buoyancy b = −g(ρ(z) − ρ0)/ρ0, and P is the perturbation to
the mean hydrostatic pressure, and g is the acceleration due to gravity.

(a) Derive the equation governing the amplitude of the vertical velocity perturbation
of a 2D normal mode internal gravity wave (∼ ei(kx−ωt)) in this fluid.

(b) Express the vertical displacement of a fluid parcel η, and the modified pressure P ,
in terms of w and dw/dz for this mode. Hence derive two continuity conditions for
w.

A plane internal gravity wave with vertical velocity perturbation
w(x, t) = w0e

i(kx−m0z−ωt) is incident from far below in the stratification

b(z) =
{
b1, for z > 0;
b1 −∆b+N2

0 z, for z < 0,

where m0, k, ω, b1, ∆b and N0 > ω are positive constants.

(c) Express m0 in terms of k, N0 and ω. At what value of the interface strength
S = ∆bk/ω2 is the largest disturbance observed in the upper layer? At this value
of S, how does the forcing frequency compare with the frequency of free waves on
an interface between two well-mixed layers, ωfree =

√
∆bk/2?

(d) Instead, assume that the well-mixed layer absorbs all incident wave energy, 1/4 of
which is converted to potential energy, by deepening of the mixed layer. Calculate
the rate of descent of the interface at z = −d(t), where d(0) = 0.
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3 A turbulent plume with a ‘top hat’ profile of radius b, vertical velocity w and density
ρp rises from a point source of buoyancy B0 into ambient fluid of density ρ.

(a) Define g′, the reduced gravity of the plume, and give expressions for the volume
flux Q, momentum flux per unit mass M and buoyancy flux B. Describe the
entrainment hypothesis and define the entrainment coefficient α. Assuming the
ambient density is constant, determine the scaling for Q, M and B as a function
of B0 > 0 and the height z above the source.

(b) Explain why a plume in stratified ambient fluid with constant
N2 = −(g/ρ0)(dρ/dz) > 0 has a finite rise height H. Sketch this plume and
determine the scaling for H.

(c) Consider the ambient stratification given by N2 = N2
s (z/zs)β , where N2

s > 0,
zs > 0 and β are constant. What is the physical significance of λ = H/zs (where
H is the rise height for β = 0)? For nonzero β the plume can either rise to a height
H ′ or it can continue to rise indefinitely, depending on λ and β. Using physical
arguements, explain how H ′/H should vary with λ and β for cases of a finite rise
height.

(d) The nondimensional plume equations may be written as

dQ̃

dz̃
= M̃1/2,

dM̃

dz̃
= B̃Q̃/M̃,

dB̃

dz̃
= −Q̃(λz̃)β

where the tildes ( ˜ ) indicate the dimensionless variables, and z̃ = z/H. Show
that these equations allow similarity solutions of the form Q̃ = cθ z̃

θ, M̃ = cµz̃
µ,

B̃ = cψ z̃
ψ, and determine cθ, cµ, cψ, θ, µ and ψ. Determine the range of β for

which B̃ remains finite if the source is located at z̃ = 1/λ. Comment on the form
of the solution as z̃ → ∞ and explain in physical terms why the plume can rise
unbounded to infinity.
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Section B

4 A sheared semi-infinite turbulent fluid layer in z > 0 is forced by an applied shear
stress τ0 = ρ0U

2
∗ in the x-direction, where U∗ is the friction velocity. A buoyancy flux per

unit area of B0 is applied at z = 0. The ensemble mean buoyancy b and velocity u satisfy

∇.u = 0,
(
∂

∂t
+ u.∇

)
b = −∇.

(
−κ∇b+ u′b′

)
and

(
∂

∂t
+ u.∇

)
ui = − 1

ρ0

∂p

∂xi
+ b δi3 −∇.

(
−ν∇ui + u′u′i

)
,

where b′ = b− b, u′ = u−u, and the molecular viscosity ν and diffusivity κ are constant.

(a) Simplify these equations for a horizontally homogeneous and stationary flow, for
which w = 0 at z = 0. Explain briefly why the turbulent correlations typically
lead to down-gradient fluxes, and define the vertical turbulent viscosity KM and
diffusivity KB . What further simplifications can be made if the Reynolds and
Peclet numbers are large?

(b) Assume that KM and KB depend only on the parameters U∗, z and the Monin-
Obukhov length lm ∼ −U3

∗/B0. Show that the mean velocity and buoyancy profiles
take a ‘log-linear’ form for z/lm � 1. By calculating the Richardson number, or
otherwise, give a physical interpretation of the limit z/lm � 1.

(c) The buoyancy flux B0 is provided by a well-mixed hot salty reservoir fed from a
hydrothermal vent supplying fluid at flow rate Q, salinity Si and temperature Ti.
The reservoir is maintained at a steady state by flow over a weir, and has volume
V and plan area A. The salinity and temperature just above the reservoir are S∞
and T∞, both constant. The stability of the double diffusive interface above the
reservoir is measured by Rρ = β∆S/α∆T where β and α are the constant salinity
contraction and thermal expansion coefficients, respectively, and ∆S and ∆T are
the salinity and temperature jumps across the interface. What is the minimum
value of Rρ? Why? What happens to the double diffusive convection as Rρ →∞?

Question 4 continues overleaf.
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(d) The total buoyancy flux per unit area across the double diffusive interface is
B0 = g(αFT − βFS). The double diffusive fluxes of salt and heat, FS and FT ,
are paramaterised using

βFS
αFT

= RF and αFT = b(α∆T )4/3/R2
ρ,

where b is a dimensional constant and RF is a dimensionless constant. Introduce
the dimensionless variables η = (Si − S)/(Si − S∞) and θ = (Ti − T )/(Ti − T∞),
to show that the dimensionless steady state salinity ηs and temperature θs in the
reservoir can be written as

ηs = θs
Rf
Roρ

and θs = C(1− θs)10/3/(1− ηs)2,

where Roρ = β(Si − S∞)/α(Ti − T∞). What is the value of C?

(e) At time t = t0 the hydrothermal vent closes and flow out of the reservoir
immediately ceases. Assuming that the interface above the reservoir remains at
the level of the weir, examine the transient evolution of η and θ to determine
η = η(θ) and t = t(θ).
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5 A room of height H and floor area S is connected to the outside by two vents each
of area A with discharge coefficients Cd. One vent is located at ceiling level and the other
at floor level, and outside the air has density ρ0.

(a) The vents are opened at t = 0 allowing the warm air of density ρ0 − ∆ρ (where
∆ρ� ρ0) within the room to escape. Determine the time evolution of the depth h
of the layer of warm air within the room, stating all necessary assumptions.

(b) A localised heat source with buoyancy flux B0 is turned on at floor level in the
centre of the room and a steady state develops. Sketch this flow and determine an
implicit expressions for the depth h and density ρ0−∆ρ of the warm air layer. The
reduced gravity in the plume above the heat source satisfies

g′p = γB
2/3
0 z−5/3,

where z is the height above the source and γ is a constant.

(c) On another day, a doorway to the outside of height D and width W0 is opened
instead of the vents. The resulting flow of warm air out through the doorway may
be modelled as a single-layer hydraulic flow over a broad-crested weir. State what is
meant by the terms ‘supercritical’, ‘subcritical’ and ‘hydraulic control’. Why does
the single-layer hydraulic model break down if the warm air layer extends too far
below the top of the doorway? Outside the room the flow accelerates upward away
from the doorway and can no longer be described by hydraulic theory. Why does
this not matter?

(d) Derive the specific energy function E for an inverted channel of varying width W (x)
and top elevation H(x) containing a layer of depth h(x) and density ρ0−∆ρ, stating
any assumptions made. Determine the relationship between ∂E/∂h and the local
Froude number F . For an inverted channel of uniform width containing a single
weir, use a series of sketches to describe the different hydraulic flows that may exist
and their relationship with E.

(e) Determine the relationship between the thickness and density of the warm air layer
within the room and the flux of warm air through the doorway. Hence or otherwise
determine an implicit expression for the steady thickness and density of the warm
air layer when the heat source used in (b) is turned on. What role is played by the
air above the doorway if D < H?

(f) Suppose a conservatory is added outside the room so that the warm air layer flows
into the conservatory and then through a second doorway to the outside. This
doorway is the same height but a different width to the first doorway. Outline
using sketches the possible flow configurations that exist depending on the relative
width of the doorways. You need not give analytical expressions, but you should
describe any special features of the flow.
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