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1 Write an essay on bargaining. Your account should include a description of the
terms jointly dominated, Pareto optimal, bargaining (or negotiation) set, Nash arbitration
procedure and maximin bargaining solution.

2 Consider the optimization problem

min f(x)

subject to h(x) = b, x ∈ X ⊂ Rn, b ∈ Rm. Define the Lagrangian function for this problem
and then state and prove the Lagrangian Sufficiency Theorem. Define the function φ by

φ(b) =
inf f(x)

x ∈ X : h(x) = b.

Define the Strong Lagrangian property and show that the following are equivalent

(1) there exists a non-vertical supporting hyperplane to φ at b

(2) the problem is Strong Lagrangian.

A company is planning to spend £a on advertising. It costs £3,000 per minute
to advertise on television and £1,000 per minute to advertise on radio. If the company
buys x minutes of television advertising and y minutes of radio advertising, its revenue in
thousands of pounds is given by f(x, y) = −2x2−y2 +xy+8x+3y. How can the company
maximise its revenue? Compare the increase in revenue for each additional advertising
pound when a = 1,000 with the case when a = 10,000.
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3 Consider the general class of linear programmes given by

min cT x

subject to Ax = b, x ≥ 0

where x ∈ Rn, b ∈ Rm and where all the entries in A, b and c have absolute magnitudes
bounded by U <∞.

Show that such linear programmes can be reduced to the special form

min c∗T y

subject to A∗y = 0

1T y = 1
y ≥ 0

with the additional properties that

(i) y(0) = (1/n∗, . . . , 1/n∗)T is feasible (where y ∈ Rn∗)

(ii) the optimal value of the objective is zero.

Why is this a useful result?
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4 Consider a network with n nodes and set of arcs A. Let cij > 0 for (i, j) ∈ A be
the length of arc (i, j) and set cij =∞ if (i, j) 6∈ A. Regarding n as the root node, define
the all-to-one shortest path problem. Define the Bellman-Ford algorithm for solving this
problem. Discuss why this is referred to as a label-correcting algorithm.

Define vi to be the shortest path length from node i to node n. Suppose that j 6= n
is a node such that cjn = min

i 6=ncin. Show that vj = cjn and vj ≤ vk for all nodes k 6= n.
Define Dijkstra’s algorithm for the all-to-one shortest path problem. Discuss why this
is referred to as a label-setting algorithm. Apply Dijkstra’s algorithm to the following
network with root node n = 4,

where the numbers beside the arcs denote the arc’s length.

5 The payoff matrix for a two-person non-zero sum game is

II1 II2

I1

I2

(
(3, 8) (4, 4)
(2, 0) (0, 6)

)
Find all equilibrium pairs when considered as a non-cooperative game. Then find

the maximin bargaining solution when the game is considered as a cooperative game.
Which game would II prefer to play?
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6 Consider the game with characteristic function v(1) = 1, v(2) = 2, v(3) =
3, v(1, 2) = 3, v(1, 3) = 10, v(2, 3) = 6 and v(1, 2, 3) = 12.

Define

(a) the set of imputations

(b) the core

(c) the nucleolus

and find them for the game defined above.
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