

MATHEMATICAL TRIPOS Part III

Monday 11 June 2001 9 to 12

PAPER 15

COMPLEX MANIFOLDS

Attempt any **THREE** questions. The questions are of equal weight.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. $\mathbf{2}$

1 Describe the hyperplane bundle [H] on $\mathbf{P}^{n}(\mathbf{C})$, and its sheaf of holomorphic sections $\mathcal{O}_{\mathbf{P}^{n}}(1)$. If H is any hyperplane of \mathbf{P}^{n} , explain why $\mathcal{O}_{\mathbf{P}^{n}}(1)$ is isomorphic to the sheaf of meromorphic functions with at worst simple poles along H. Assuming the fact that $H^{i}(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}) = 0$ for all i > 0, calculate the dimensions $h^{r}(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(m)) = 0$ for all integers $r, m \geq 0$.

Let $\pi : \mathbf{C}^{n+1} \setminus \{0\} \to \mathbf{P}^n$ denote the standard morphism, and X_0, \ldots, X_n coordinates on \mathbf{C}^{n+1} . Let $x_i = X_i/X_0$ denote affine coordinates on the relevant open affine subset U_0 of \mathbf{P}^n . If $P \in \mathbf{C}^{n+1} \setminus \{0\}$ has $\pi(P) \in U_0$, and we consider the tangent vector $\partial/\partial X_i$ at $P = (a_0, \ldots, a_n)$, show that its image in the holomorphic tangent space at $\pi(P)$ is

$$\pi_*(\partial/\partial X_i) = \begin{cases} a_0^{-1} \ \partial/\partial x_i & \text{for } i = 1, \dots, n \\ -\sum_{1}^n a_0^{-2} a_j \ \partial/\partial x_j & \text{for } i = 0. \end{cases}$$

If L is any linear homogeneous form in X_0, \ldots, X_n , show that $\pi_*(L \partial/\partial X_j)$ defines a holomorphic vector field on \mathbf{P}^n . What is the vector field $\pi_*(\sum_{i=1}^n X_i \partial/\partial X_i)$? Deduce the existence of a short exact sequence of locally free $\mathcal{O}_{\mathbf{P}^n}$ -modules

$$0 \to \mathcal{O}_{\mathbf{P}^n} \to \mathcal{O}_{\mathbf{P}^n}(1)^{\oplus (n+1)} \to \mathcal{O}_{\mathbf{P}^n}(T'_{\mathbf{P}^n}) \to 0,$$

explaining carefully the sheaf morphisms involved. Calculate $h^0(\mathbf{P}^n, \Omega^1_{\mathbf{P}^n}(1))$, where, as usual, $\Omega^1_{\mathbf{P}^n}(1)$ denotes the sheaf $\mathcal{O}_{\mathbf{P}^n}((T'_{\mathbf{P}^n})^* \otimes [H])$.

2 Write an essay giving an *overview* of integrable almost complex structures on a manifold M, including an account of the relationship between connections on the holomorphic tangent bundle T'_M which are compatible with the complex structure, and connections on the real tangent bundle which satisfy certain compatibility conditions, and an explanation of the role of Kähler metrics.

3 Define what is meant by a connection D on a complex vector bundle E on a C^{∞} manifold M, and explain why connections on E always exist. Define what is meant by the curvature Θ associated with the connection. State and prove Cartan's equation for the curvature matrix (with respect to a given local frame for E). Explain how one obtains a globally defined 2-form Tr Θ from the curvature.

If E has rank r and D a connection on E, show that there is a naturally defined connection D_r on $\Lambda^r E$, whose curvature 2-form is just $\operatorname{Tr} \Theta_D$. Show that this 2-form is closed. Show that the De Rham cohomology class determined by $\operatorname{Tr} \Theta$ is independent of the connection chosen. [*Hint: Consider the isomorphism* $H^2_{DR}(M, \mathbb{C}) \cong H^1(M, \mathbb{Z}^1_M)$, where \mathbb{Z}^1_M denotes the sheaf of closed 1-forms on M.]

Suppose now that M is a complex manifold, and E is a holomorphic line bundle with a hermitian metric. If e is a local nowhere vanishing holomorphic section of E, consider the (locally defined) C^{∞} function $h = ||e||^2$; show that the metric determines a globally defined connection on E, with curvature form locally $\bar{\partial}\partial(\log h)$.

Paper 15

3

4 If M is a compact complex manifold equipped with a hermitian metric, explain briefly how this determines a hermitian inner-product on the space $A^{p,q}(M)$ of global (p,q)-forms. State carefully the Hodge theorem concerning the decomposition of $A^{p,q}(M)$ by means of the $\bar{\partial}$ -Laplacian $\Delta_{\bar{\partial}}$, and deduce the standard orthogonal decomposition

$$A^{p,q}(M) = \mathcal{H}^{p,q}_{\bar{\partial}}(M) \oplus \bar{\partial} A^{p,q-1}(M) \oplus \bar{\partial}^* A^{p,q+1}(M),$$

with the $\bar{\partial}$ -closed forms being the sum of the first two factors. [Standard properties of $\bar{\partial}^* = -*\bar{\partial}*$ may be assumed.]

Suppose now that M is also Kähler; define the Laplacians Δ_d , Δ_∂ , and prove that (a) $\partial \bar{\partial}^* + \bar{\partial}^* \partial = 0$ (b) $\Delta_d = \Delta_\partial + \Delta_{\bar{\partial}}$ and (c) $\Delta_\partial = \Delta_{\bar{\partial}}$. [You may assume the Hodge identity $[\Lambda, \partial] = i\bar{\partial}^*$, provided you describe the operator Λ .]

Let η be a $\bar{\partial}$ -exact (p, q)-form on a compact Kähler manifold M; show that $\eta = \bar{\partial} \bar{\partial}^* \alpha$ for some (p, q)-form α . If η is also ∂ -closed, prove that $\partial \bar{\partial}^* \alpha$ is harmonic; hence deduce that $\bar{\partial}^* \alpha$ is ∂ -closed. Conclude that such an η can be expressed as $\eta = \bar{\partial} \partial \phi$, for some $\phi \in A^{p-1,q-1}(M)$.