

Topics in Set Theory

The following multiple choice self-test questions are intended to give an indication whether you have the first-level prerequisites for the Part III course *Topics in Set Theory*. All of them are basic and easy questions in set theory: you should get most of them right without effort or preparation.

BASICS.

1. In the usual formalization of natural numbers and ordered pairs (i.e., $n = \{0, \dots, n-1\}$ and $(x, y) := \{\{x\}, \{x, y\}\}$), one of the following statements is true. Which one?
 - A** $17 \in 4$.
 - B** $(0, 1) = 2$.
 - C** $2 \in (0, 1)$.
 - D** $4 \in (4, 17)$.
2. We often use informal mathematical notation using curly braces to denote sets. However, not every expression corresponds to a set; sometimes, we denote proper classes. Among the following expressions, one corresponds to a proper class. Which one?
 - A** $\{x ; x \text{ is a nonempty subset of the natural numbers}\}$.
 - B** $\{x ; x \text{ is a finite set of real numbers}\}$.
 - C** $\{x ; x \text{ is a one-element set of rational numbers}\}$.
 - D** $\{x ; x \text{ is a two-element subset of a vector space}\}$.
3. Consider the following model $M = (\{x, y\}, \in)$ as a model of set theory (where $x \in x$ and $x \in y$, but not $y \in x$ or $y \in y$):

One of the following axiom (scheme)s of set theory is true in M . Which one?

- A** The Pairing Axiom.
- B** The Axiom of Foundation.
- C** The Union Axiom.
- D** The Axiom Scheme of Separation.

4. The Zermelo numbers are defined by the following recursion: $z_0 := \emptyset$ and $z_{n+1} := \{z_n\}$. The von Neumann numbers are defined by: $v_0 := \emptyset$ and $v_{n+1} := v_n \cup \{v_n\}$ (i.e., $v_n = n$). One of the following statements is true. Which one?
 - A** $z_2 = v_2$.
 - B** $z_2 \in v_4$.
 - C** $z_2 \subseteq v_2$.
 - D** $z_2 \in z_4$.

5. One of the following statements about (X, R) implies that (X, R) is a wellorder. Which one?

- A** R is a transitive relation.
- B** R is a linear relation.
- C** X has an R -minimal element.
- D** There is a wellorder (Y, S) and an injective function $f : X \rightarrow Y$ such that for all $x_0, x_1 \in X$, we have $x_0 R x_1$ if and only if $f(x_0) S f(x_1)$.

6. Consider the integers \mathbb{Z} with their natural order $<$ and their natural multiplication \cdot . One of the following sets is wellordered by $<$. Which one?

- A** $\mathbb{Z} \setminus \{0\}$,
- B** $\{z \in \mathbb{Z}; \exists x \in \mathbb{Z} (z = 2 \cdot x)\}$,
- C** $\{z \in \mathbb{Z}; z < 0 \wedge \exists x \in \mathbb{Z} (z = 2 \cdot x)\}$,
- D** $\{z \in \mathbb{Z}; \exists x \in \mathbb{Z} (z = x \cdot x)\}$.

ORDINALS.

7. One of the following is provable in ZF. Which one?

- A** Every transitive set is an ordinal.
- B** Every transitive set of ordinals is an ordinal.
- C** Every set of ordinals is transitive.
- D** None of the above.

8. Only one of the following statements is correct. Which one?

- A** There are two different order isomorphisms between ω_1 and ω_1 .
- B** There are two different order isomorphisms between ω and ω .
- C** There are two different order-preserving embeddings from ω to ω_1 .
- D** There are two different order-preserving embeddings from ω_1 to ω .

9. One of the following ordinal inequalities is true. Which one?

- A** $5 \cdot \omega < \omega \cdot 5$.
- B** $\omega \cdot 5 < 5 \cdot \omega + 5$.
- C** $5 + \omega + \omega \cdot \omega \cdot \omega < \omega + 5 + \omega \cdot \omega \cdot \omega$.
- D** $5 \cdot (20 + \omega_1) < 5 \cdot \omega_1$.

CARDINALS.

10. The statement “there are no cardinal numbers between \aleph_0 and \aleph_1 ” is...

- A** ...provable in ZF,
- B** ...provable in ZFC, but not in ZF,
- C** ...equivalent to the Continuum Hypothesis in the base theory ZFC.
- D** None of the above.

11. In ZFC, one of the following statements is equivalent to the continuum hypothesis. Which one?

- A** There is a bijection between the power set of \mathbb{N} and the real numbers.
- B** Every set of real numbers has an uncountable subset.
- C** Every uncountable set of real numbers has a countable subset.
- D** Every uncountable set of real numbers has a subset that is in bijection with the real numbers.

12. Work in ZF and consider $W := \{(A, R) ; A \subseteq \mathbb{N} \text{ and } (A, R) \text{ is a wellorder}\}$. What is the cardinality of the set W ?

- A** ZF proves that it is \aleph_0 .
- B** ZF proves that it is \aleph_1 .
- C** ZF does not prove that it is \aleph_1 , but ZFC proves that it is \aleph_1 .
- D** ZFC does not prove that it is \aleph_1 , but ZFC + CH proves that it is \aleph_1 .

13. Only one of the following statements is false. Which one?

- A** There is an order preserving injection from ω to \aleph_ω .
- B** There is an order preserving injection from ω_1 to \aleph_ω .
- C** There is a cofinal order preserving injection from ω to \aleph_ω .
- D** There is a cofinal order preserving injection from ω_1 to \aleph_ω .

14. Let κ be a cardinal with $\text{cf}(\kappa) = \aleph_0$. Only one of the following statements is provable. Which one?

- A** Every injective function from κ to κ has countable range.
- B** The set κ is a countable union of sets of cardinality strictly smaller than κ .
- C** The cardinal κ is countable.
- D** If $\kappa = \aleph_\xi$, then ξ is a countable ordinal.