Tensors

T. J. Crawford, J. Goedecke, P. Haas, E. Lauga, J. Munro, J. M. F. Tsang

July 14, 2016

1 Relevant courses

The relevant Cambridge undergraduate course is IA Vector Calculus.

2 Books

- K. F. Riley, M. P. Hobson and S. J. Bence *Mathematical Methods for Physics and Engineering*. Cambridge University Press 2002.
- D. E. Bourne and P. C. Kendall Vector Analysis and Cartesian Tensors. 3rd edition, Nelson Thornes 1999

3 Notes

3.1 Definition and examples

Consider orthogonal right-handed bases $\{e_i\}$ and $\{e'_i\}$ in \mathbb{R}^3 with corresponding Cartesian coordinates $\{x_i\}$ and $\{x'_i\}$. Then a vector $\boldsymbol{x} \in \mathbb{R}^3$ can be written as

$$\boldsymbol{x} = x_i \boldsymbol{e}_i = x_i' \boldsymbol{e}_i'$$

(using summation convention throughout these notes).

These two bases are related by a rotation:

$$\mathbf{e}'_i = R_{ip} \mathbf{e}_p$$
 and $x'_i = R_{ip} x_p$

where R is a rotation matrix, so

- R is orthogonal: $R_{ip}R_{jp} = R_{qi}R_{qj} = \delta_{ij}$, and
- det R = 1.

Tensors are geometrical objects which obey a generalised form of this transformation rule. By definition, a tensor T of rank n has components $T_{ij...k}$ (with n indices) with respect to each basis $\{e_i\}$ or coordinate system $\{x_i\}$, obeying the *tensor transformation rule*

$$T'_{ij\dots k} = R_{ip}R_{jq}\dots R_{kr}T_{pq\dots r}.$$

under a change of basis.

Examples Here are some examples of the tensor transformation rule for different ranks:

6

- Rank 0: T' = T. Rank 0 tensors are *scalars*.
- Rank 1: $T'_i = R_{ip}T_p$. As we have seen, these are vectors.
- Rank 2: $T'_{ij} = R_{ip}R_{jq}T_{pq}$. These are matrices which represent linear maps or quadratic forms.

Special cases The tensors δ_{ij} and ϵ_{ijk} are tensors of rank 2 and 3 respectively, with the special property that their components are unchanged under any change of basis:

$$R_{ip}R_{jq}\delta_{pq} = R_{ip}R_{jp} = \delta_{ij}$$

and

 $R_{ip}R_{jq}R_{kr}\epsilon_{pqr} = (\det R)\epsilon_{ijk} = \epsilon_{ijk}.$

Symmetric and antisymmetric tensors A tensor of rank *n* obeying $T_{ijp...q} = \pm T_{jip...q}$ is said to be symmetric/antisymmetric in the indices *i* and *j*. A tensor is said to be totally symmetric/antisymmetric if it is symmetric/antisymmetric under any such swap of indices.

So, δ_{ij} is totally symmetric and ϵ_{ijk} is totally antisymmetric.

In \mathbb{R}^3 , any totally antisymmetric tensor of rank 3 takes the form $T_{ijk} = \lambda \epsilon_{ijk}$ for some λ . There is no totally antisymmetric tensor of rank n > 3 (unless all components are zeros).

4 Exercises

4.1 Basic properties

Show each of the following:

- If T and S are both tensors of rank n, then $(T+S)_{ij...k} = T_{ij...k} + S_{ij...k}$. (Hint: Use the transformation rule.)
- If α is a scalar, then $(\alpha T)_{ij...k} = \alpha T_{ij...k}$.
- Hence, any linear combination of rank n tensors is itself a rank n tensor.
- If T and S are tensors of rank n and m respectively, then the *tensor product*

$$(T \otimes S)_{ij\ldots kpq\ldots r} = T_{ij\ldots k}S_{pq\ldots r}$$

is a tensor of rank n + m.

- If $\boldsymbol{u}, \boldsymbol{v}, \ldots, \boldsymbol{w}$ are *n* vectors, then $T_{ij\ldots k} = u_i v_j \ldots w_k$ defines a tensor of rank *n*.
- If $T_{ijp...q}$ is a tensor of rank n, then $S_{p...q} = \delta_{ij}T_{ijp...q}$ is a tensor of rank n-2. (Note that contracting on a different pair of indices in general results in a different tensor.)
- The trace of a matrix, T_{ii} , is a rank 0 tensor.

4.2 Further exercises

Let $u_i(\mathbf{x})$ be a vector field and let $\sigma_{ij}(\mathbf{x})$ be a second-rank tensor field. Show that:

- $\partial u_i / \partial x_j$ transforms as a rank 2 tensor.
- $\nabla \cdot \boldsymbol{u} = \partial u_i / \partial x_i$ is a scalar.
- $\partial \sigma_{ij}/partialx_j$ transforms as a vector.

Let T be a tensor of rank 3, satisfying

$$T_{ijk} = T_{jik}$$
 and $T_{ijk} = -T_{ikj}$.

Show that $T_{ijk} = 0$.

Let T be a tensor of rank 4, satisfying

$$T_{ijkl} = -T_{jikl} = -T_{ijlk}$$
 and $T_{ijij} = 0$

Show that

 $T_{ijkl} = \epsilon_{ijp} \epsilon_{klq} S_{pq}$

where $S_{pq} = -T_{rqrp}$.