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1 Relevant courses

The relevant Cambridge undergraduate courses are IB Fluid Dynamics, II Fluid Dynamics and II Mathematical
Biology.

2 Books

The principles of scaling analysis, and a number of examples, are given in Elementary Fluid Dynamics by D.
J. Acheson, OUP 1990.

3 Notes

3.1 The heat equation

Consider the heat equation
∂u

∂t
= α∇2u

where α is the thermal diffusivity (related to the thermal conductivity of a material k by α = k/(cpρ).

Specifically, consider this equation on the one-dimensional domain x ∈ [0, L] for t > 0 (so that ∇2 = d2

dx2 ). The
initial and boundary conditions are

u(x, 0) = f(x) for some given f

and
u(0, t) = u(L, t) for all t.

What is the timescale for heat to decay?

There are two approaches for analysing this problem.

Approach 1: Exact solution We solve the equation exactly using separation of variables. Looking for
u(x, t) as a superposition of solutions of the form T (t)X(x), we find that the solution takes the form

u(x, t) =

∞∑
n=1

Dn sin

(
nπx

L

)
exp

(
−n2π2αt

L2

)
.

Therefore, the decay happens over a timescale T ∝ L2/α.
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Approach 2: Dimensional/scaling analysis Let us write u(x, t) = Uû(x, t), where U is a ‘typical’ tem-
perature. Also, write t = T t̂ and x = Lx̂. We are interested in finding the timescale T . The hatted quantities
are all nondimensional.

Substituting these into the heat equation, and dropping hats, one gets

U

T
ut =

αU

L2
uxx.

Since the dimensions must match up,
U

T
∝ αU

L2

and so T ∝ L2/α as before.

3.2 The Reynolds number

Consider the Navier-Stokes equations

ρ
Du

Dt
= −∇p+ µ∇2u and ∇ · u = 0

supposing that there are no body forces.

Let u = Uû, x = Lx̂, t = T t̂ and p = P p̂, where T is the advective timescale, T = L/U (so that the ∂u
∂t and

u ·∇u terms are scaled equally). Putting these into the Navier-Stokes equations, and dropping hats, we get

ρU2

L

Du

Dt
=
−P
L

∇P +
µU

L2
∇2u.

The Reynolds number is defined as the ratio of the inertia term to the viscous term:

Re =
inertia

viscosity
=
ρU2/L

µU/L2
=
ρLU

µ
=
LU

ν
. (1)

We can proceed in two different ways:

• Dividing by the viscous scale gives us

Re
Du

Dt
=
−PL
µU

∇P + ∇2u.

For small Re, we choose the viscous pressure scale P ∼ µU
L , and we get the Stokes equations

∇p = ∇2u

which hold at low Reynolds numbers (i.e. for viscous flows).

• Alternatively, dividing by the inertia scale gives us

Du

Dt
=
−P
ρU2

∇P +
1

Re
∇2u.

For large Re, we choose the inviscid pressure scale P ∼ ρU2, to get the inviscid Euler equations

Du

Dt
= −∇P.

4 Exercises

4.1 Exercise 1

A simple model of two competing species eating the same food takes the form

dN1

dt
= r1N1

(
1− N1

K1
− b12

N2

K2

)
,

dN2

dt
= r2N2

(
1− N2

K2
− b21

N1

K1

)
,

where N1 and N2 are the population sizes. Rescale the equations to simplify them, and show that the solutions
depend only on ρ = r2/r1, b12 and b21.
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4.2 Exercise 2

The concentration of a chemical C(x, t) satisfies the nonlinear diffusion equation

∂C

∂t
=

∂

∂x

(
D(C)

∂C

∂x

)
and the condition

∫∞
−∞ C(x, t) dx = M . The diffusivity is given by D(C) = kCp, and M , k and p are positive

constants.

Use dimensional analysis to find a suitable space-like scale ξ and a space-independent η for the similarity solution
of the form

C(x, t) = ηF (ξ).

Use this form to seek the solution initially localised to the origin, and show that F is of the form

F (ξ) =


(
A− p

2(2+p)ξ
2
)1/p

for |ξ| < ξ0

0 otherwise

for some A and ξ0. For the case when p = 2, find A and ξ0.

4.3 Exercise 3: Flow in a 2D thin layer

Consider a flow in a 2D domain where x ∼ L and y ∼ δL, where δ � 1 so the domain is thin. How do ∂
∂x and

∂
∂y scale?

If u ∼ U , explain why v ∼ δU , and explain why the advective timescale T is proportional to L/U .

Rescale the Navier-Stokes equations, taking an advective timescale and choosing the pressure scale P so that it
always balances the x-momentum equation. Show that three regimes are possible, depending on how large Re
is compared to δ:

• If δ2Re� 1 then P ∼ µU
δ2L , and

0 = − ∂p

∂x
+
∂2u

∂y2
and 0 = − ∂p

∂y
.

This is the lubrication regime.

• If δ2Re ∼ 1 then again P ∼ µU
δ2L , but now

Du

Dt
= − ∂p

∂x
+
∂2u

∂y2
and 0 = − ∂p

∂y
.

These are the unsteady boundary layer equations. They represent the flow of a low-viscosity fluid in a thin
layer near a no-slip boundary; the thickness of the boundary layer is controlled by the viscosity of the
fluid.

• For δ2Re� 1, one has P ∼ ρU2, and

Du

Dt
= − ∂p

∂x
and 0 = − ∂p

∂y

This is the shallow water regime. This regime can be used to model the flow of low-viscosity fluids in
chutes, rivers or even oceans (provided that horizontal lengths are far greater than the depth).

4.4 Exercise 4: Decay of vorticity

Writing ω = ∇× u for the vorticity, and using the identities

(u ·∇)u = (∇× u)× u + ∇
(

1

2
|u|2

)
and

∇2u = ∇(∇ · u)−∇× (∇× u),
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show that
∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u = ν∇2ω

provided that body forces are conservative. This is the vorticity equation.

Why does the (ω ·∇)u term vanish in the 2D case?

Show that vorticity decays over a lengthscale L ∝ ν
U .
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