Scaling analysis

T. J. Crawford, J. Goedecke, P. Haas, E. Lauga, J. Munro, J. M. F. Tsang

July 14, 2016

1 Relevant courses

The relevant Cambridge undergraduate courses are IB Fluid Dynamics, IT Fluid Dynamics and II Mathematical
Biology.

2 Books

The principles of scaling analysis, and a number of examples, are given in Elementary Fluid Dynamics by D.
J. Acheson, OUP 1990.

3 Notes

3.1 The heat equation

Consider the heat equation

@ =aV3u

ot
where « is the thermal diffusivity (related to the thermal conductivity of a material k by o = k/(c,p).

Specifically, consider this equation on the one-dimensional domain z € [0, L] for t > 0 (so that V2 = f—;). The
initial and boundary conditions are

u(z,0) = f(z) for some given f

and
u(0,t) = u(L,t) for all t.

What is the timescale for heat to decay?

There are two approaches for analysing this problem.

Approach 1: Exact solution We solve the equation exactly using separation of variables. Looking for
u(x,t) as a superposition of solutions of the form T'(¢) X (x), we find that the solution takes the form

2

u(z,t) = Z D,, sin (nzx) exp (T) :
n=1

Therefore, the decay happens over a timescale T oc L?/a.



Approach 2: Dimensional/scaling analysis Let us write u(x,t) = Ud(z,t), where U is a ‘typical’ tem-
perature. Also, write t = T't and x = Lz. We are interested in finding the timescale T. The hatted quantities
are all nondimensional.

Substituting these into the heat equation, and dropping hats, one gets

U aU
T Tt
Since the dimensions must match up,
U oU
o —
T L2

and so T' o< L?/a as before.

3.2 The Reynolds number

Consider the Navier-Stokes equations

pD—rl::pr+uV2uandV~u:O

supposing that there are no body forces.

Let w = Ui, x = L&, t = Tt and p = Pp, where T is the advective timescale, T = L/U (so that the u and

ot
u - Vu terms are scaled equally). Putting these into the Navier-Stokes equations, and dropping hats, we get
pU?Du  —P wU o
— — =—VP+ —V-u.
I Dt Lt

The Reynolds number is defined as the ratio of the inertia term to the viscous term:
inertia ~ pU?/L  pLU LU

Re = = = .
viscosity — pU/L? 1 v

We can proceed in two different ways:

e Dividing by the viscous scale gives us

Du —-PL
— = __"_2"VP+ V.
Re Dt i + u

For small Re, we choose the viscous pressure scale P ~ %, and we get the Stokes equations
Vp = V3u
which hold at low Reynolds numbers (i.e. for viscous flows).

e Alternatively, dividing by the inertia scale gives us

Du -pP 1
— = _—_—_VP+ —V?u.
Dt 2V TRe Y M
For large Re, we choose the inviscid pressure scale P ~ pU?, to get the inviscid Euler equations
Du
— =—-VP.
Dt

4 Exercises

4.1 Exercise 1

A simple model of two competing species eating the same food takes the form
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where N7 and N» are the population sizes. Rescale the equations to simplify them, and show that the solutions
depend only on p = r3/71, b12 and bo;.



4.2 Exercise 2

The concentration of a chemical C(z,t) satisfies the nonlinear diffusion equation

oC 0 ocC
m:&(”@m>

and the condition ffooo C(z,t)dz = M. The diffusivity is given by D(C) = kCP, and M, k and p are positive
constants.

Use dimensional analysis to find a suitable space-like scale £ and a space-independent 7 for the similarity solution
of the form

C(z,t) = ﬁF(f)

Use this form to seek the solution initially localised to the origin, and show that F' is of the form

1/
P - (A-mdme) | ol <&

0 otherwise

for some A and &y. For the case when p = 2, find A and &.

4.3 Exercise 3: Flow in a 2D thin layer

Consider a flow in a 2D domain where z ~ L and y ~ §L, where § < 1 so the domain is thin. How do % and

el ?
By scale’

If u ~ U, explain why v ~ 60U, and explain why the advective timescale T is proportional to L/U.

Rescale the Navier-Stokes equations, taking an advective timescale and choosing the pressure scale P so that it
always balances the z-momentum equation. Show that three regimes are possible, depending on how large Re
is compared to §:

e If 5°Re < 1 then P ~ %, and

Op 0%u Jop
0=-L 2% anao=-2£
Oz + Oy? Oy
This is the lubrication regime.
o If 6°Re ~ 1 then again P ~ "2—%, but now
Du op O%u Op
— =——+—and 0= — —.
Dt ox + Oy o oy

These are the unsteady boundary layer equations. They represent the flow of a low-viscosity fluid in a thin
layer near a no-slip boundary; the thickness of the boundary layer is controlled by the viscosity of the
fluid.

e For 62Re >> 1, one has P ~ pU?, and

Du  0Jp _Op
Dt Ox andO——ay

This is the shallow water regime. This regime can be used to model the flow of low-viscosity fluids in
chutes, rivers or even oceans (provided that horizontal lengths are far greater than the depth).

4.4 Exercise 4: Decay of vorticity
Writing w = V X u for the vorticity, and using the identities
Lo
(u-Viu=(Vxu)xu+V §|u|

and
Viu=V(V-u) -V x(V xu),



show that 9
8—?+(UoV)w7(w~V)u:1/V2w

provided that body forces are conservative. This is the vorticity equation.
Why does the (w - V)u term vanish in the 2D case?

Show that vorticity decays over a lengthscale L oc .



