
REPRESENTATION THEORY WORKSHOP

1. Introduction

Our aim is to cover the basic representation theory of finite groups. This leads
to a first obvious question: what is a representation of a group?

Definition. Let G be a group. A representation of G is a group homomorphism
ρ : G→ GL(V ) where V is some vector space over a field k. We write it as the pair
(V, ρ).

Remark. In practice, all of our representations will be over k = C and will be
finite dimensional, i.e V will be a finite dimensional vector space over C. Moreover
all groups considered will be finite.

Example. (1) For G any group, there is always a trivial representation given
by V = C and ρ(g) = id for all g ∈ G.

(2) Let G = Cn be the cyclic group of order n and V = C. Say g ∈ G generates
the group. Then we have a representation

ρ :G→ GL(V ) = C×

g 7→ e
2πi
n

(3) Let G = Sn be the symmetric group. Then the signature of a permutation
gives a representation ε : G→ {±1} ≤ C×.

(4) Let G = D6 = 〈r, s|r3 = s2 = 1, srs = r−1〉. This is the group of symme-
tries of an equilateral triangle, where r corresponds to the rotation by 2π

3
and s corresponds to the reflection through one of the axes. Then we have
a representation

ρ :G→ GL2(C)

r 7→
Å
ω 0
0 ω−1

ã
s 7→

Å
0 1
1 0

ã
where ω = e

2πi
3 . After changing basis, the above matrices become equiva-

lent to

ρ′(r) =

Å
cos 2π

3 sin 2π
3

− sin 2π
3 cos 2π

3

ã
, ρ′(s) =

Å
0 1
1 0

ã
which gives what you expect given the description of G as the group of
symmetries of a triangle.

In the last example above we saw two different representations which were really
the same representation up to changing bases. This can be formalised as follows:
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Definition. A G-homomorphism, or intertwining map, between two representa-
tions (V, ρ) and (W,ρ′) is a linear map ϕ : V → W such that for all v ∈ V and all
g ∈ G, we have ϕ(ρ(g)v) = ρ′(g)ϕ(v). A shorter way of writing this is ϕ◦ρ = ρ′ ◦ϕ,
or ϕ(gv) = gϕ(v) if we drop the ρ’s.

Remark. We will often drop the ρ’s and just write gv to mean ρ(g)v.

In particular, if the homomorphism ϕ is a linear isomorphism, then we have
ρ′ = ϕ ◦ ρ ◦ ϕ−1. In other words, once we identify V and W as vector spaces and
once we pick a basis for V , the map ϕ then becomes a change of basis map and
the two representations are the same up to changing bases. So we can talk about
representations being isomorphic.

Notation. We will write HomG(V,W ) to denote the set of all G-homomorphisms
between two representations V and W of G.

Definition. Let V be a representation of G and 0 6= W ≤ V a vector subspace.
We say that W is a subrepresentation, or a G-invariant subspace, if for all g ∈ G,
gW ⊆W . If V has no proper subrepresentation, then we say that V is irreducible.

Example. All the representations in the previous example are irreducible. More-
over 1-dimensional representations are always irreducible. But, say, the represen-
tation of C3 = 〈g〉 given by

ρ(g) =

Å
ω 0
0 ω−1

ã
is not irreducible since

W =

≠Å
1
0

ã∑
is a subrepresentation.

In general, over an algebraically closed field, commuting matrices always have a
common eigenvector. So the only irreducible complex representations of an abelian
group are the 1-dimensional representations (this is not necessarily true over non-
algebraically closed fields).

2. Some results

Here are a few basic but very important results on representations of finite
groups. In this section we return to the general case where representations are
over some arbitrary field k.

Theorem. (Schur’s lemma) Let V,W be irreducible representations of G over k.

(i) Every G-homomorphism ϕ : V →W is either zero or an isomorphism.
(ii) If k = k̄ then

dimk HomG(V,W ) =

ß
1 if V ∼= W
0 otherwise

In particular if V ∼= W then HomG(V,W ) = {λid : λ ∈ k}.
Schur’s lemma is a basic but crucial result that can be applied to many different

areas of representation theory. You might encounter it in the course on Lie algebras
for example.

Now, we saw that either representations contain smaller representations, or they
are irreducible. It turns out these irreducible representations are the “building
blocks” of all representations.
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Theorem. (Maschke) Suppose that chark does not divide |G|. Then every finite
dimensional representation V of G decomposes as a direct sum of subrepresentations

V =
n⊕
i=1

Wi

where Wi ≤ V is irreducible for all i. More generally, given a subrepresentation
W ≤ V , there exists a G-invariant W ′ ≤ V such that V = W ⊕W ′.

We will see later that the irreducible summands are unique up to isomorphism.
We sometimes say that representations of G are semisimple or completely reducible
to say that they decompose into irreducibles in that way. You should think of
Maschke’s theorem as a type of Jordan Normal Form decomposition for representa-
tions. Again there are many analogues of this result in other areas of representation
theory, for example Weyl’s theorem in the theory of Lie algebras.

Example. The representation of C3 = 〈g〉 given by

ρ(g) =

Å
ω 0
0 ω−1

ã
decomposes as

V =

≠Å
1
0

ã∑
⊕
≠Å

0
1

ã∑
.

We will see a less trivial example of such decompositions in the next section.

3. The group algebra and permutation representations

We’re going to see a different approach of what representations are.

Definition. Let G be a finite group. The group algebra CG is the C-vector space
with basis given by the abstract symbols {eg : g ∈ G}. It is a ring with multiplica-
tion given by eg · eh = egh (extended C-linearly) and unit 1 = e1.

Remark. By abuse of notation, we often write g instead of eg and think of the
group elements as the basis of CG.

The reason for introducing the group algebra is that we have the following

Fact. Representations of G and modules over the ring CG are the same things, i.e
V is a representation of G if and only if it is a CG-module.

This other way of thinking about representations in terms of modules over rings is
not going to play a big part for us, but is really important in modern representation
theory. The group algebra CG is itself a representation of G, given by g · eh = egh
(extended linearly). This is called the regular representation.

Example. Let G = C3 = {1, g, g2}. Then with respect to the basis {e1, eg, eg2}
for CG, we see that the regular representation is given by

ρreg(g) =

Ñ
0 0 1
1 0 0
0 1 1

é
Definition. More generally if X is a set on which G acts then we can form the
permutation representation CX, which is the C-vector space with basis {ex : x ∈ X}
and G-action given by g · ex = eg·x (extended C-linearly) for all g ∈ G and x ∈ X.
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Example. Remember we may think of D6 as the symmetries of a triangle, where
r is the rotation by 2π

3 and s is the reflection through one of the axes. Let G = D6

act on the set X = {vertices of an equilateral triangle} = {v1, v2, v3}, where say

rv1 = v2, rv2 = v3, rv3 = v1

and

sv1 = v1, sv2 = v3, sv3 = v2.

So the action of G on CX is given by

ρ(r) =

Ñ
0 0 1
1 0 0
0 1 0

é
, ρ(s) =

Ñ
1 0 0
0 0 1
0 1 0

é
.

Then the representation decomposes as CX = V1 ⊕ V2 where V1 = 〈v1 + v2 + v3〉
and V2 = 〈v1 + ωv2 + ω2v3, v1 + ω2v2 + ωv3〉 (remember ω = e

2πi
3 ).

We will see later that there are, up to isomorphism, only finitely many finite
dimensional irreducible complex representations of a finite group. Using this, we
finish this section with a nice

Fact. Every irreducible complex representation V of G is a direct summand of CG,
occuring with multiplicity dimV . In other words, if V1, . . . , Vn are the irreducible
representations of G, then

CG ∼=
n⊕
i=1

(dimVi)Vi.

As dimCG = |G|, we deduce the following formula:

|G| =
n∑
i=1

(dimVi)
2.

4. Character Theory

Definition. The character of a representation ρ : G → GL(V ) is the function
χρ : G→ C (sometimes also written χV ) defined by

χρ(g) = trρ(g).

We often drop the ρ and just write χ when no confusion can arise. Characters
afforded by irreducible representations are called irreducible characters.

We can deduce a couple of things from the above definition:

• Since the trace is conjugate invariant, the character χ is constant on con-
jugacy classes. Hence we may think of it as a class function, i.e a function
C (G)→ C, where C (G) denotes the set of conjugacy classes in G.
• Suppose C (G) = {C1, . . . , Cn}. Then the class functions form a vector space

with basis given by

δCi : Cj 7→ δij .

In particular this vector space has dimension the number of conjugacy
classes, i.e |C (G)|.

Theorem. The irreducible characters form a basis of the space of class functions.
Hence the number of irreducible characters is |C (G)|.
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Example. (1) The cyclic Cn is abelian, so all of its irreducible complex rep-
resentations are 1-dimensional. If g ∈ Cn generates the group, then we
can easily see that these representations are just given by g 7→ ωj where

ω = e
2πi
n and 1 ≤ j ≤ n. So there are indeed n of them, just as there are n

conjugacy classes in Cn.
(2) The group D6 has 3 conjugacy classes, namely

{1}, {r, r2}, {s, sr, sr2}.

It has two 1-dimensional representations, given by r 7→ 1 and s 7→ ±1
(exercise: check these are well-defined). It also has a 2-dimensional one that
we saw earlier. By the theorem these are all the irreducible representations.

We saw above that the space of class functions is a vector space with basis the
irreducible characters. Furthermore, it is actually an inner product space. Indeed,
if we let χ and ψ be two class functions, then we define their inner product to be

〈χ, ψ〉 =
1

|G|
∑
g∈G

χ(g)ψ(g).

We then have the following important result:

Theorem. (Orthogonality of characters) The irreducible characters form an or-
thonormal basis of the space of class functions, i.e if we let χ and ψ be two irre-
ducible characters afforded by the representations V and W respectively, then we
have

〈χ, ψ〉 =

ß
1 if V ∼= W
0 otherwise

This should remind you a bit of Schur’s lemma, and indeed this is a consequence
of it (hence it is very important that we work over C here).

Consequences. (1) Let V =
⊕
niVi where the Vi’s are distinct irreducible

representations and ni ≥ 1. Write χ for the character of V , and χi for the
character of Vi. Then
• χ =

∑
i niχi

• ni = 〈χi, χ〉
• 〈χ, χ〉 =

∑
i n

2
i

(2) The decomposition into irreducible representations is unique.
(3) If V and W are two representations of G, then

V ∼= W ⇐⇒ χV = χW .

(4) Let χ be a character of G. Then χ is irreducible if and only if 〈χ, χ〉 = 1

Example. Let G = D6 act on the set X = {v1, v2, v3} of vertices of a triangle. We
already saw previously how the permutation representation decomposes. Let’s do
it again this time using only characters. Let χ be the corresponding permutation
character. The conjugacy classes in D6 have representatives 1, r and s. Since the
character is a class function we only need to compute it at class representatives.
We have already computed the action of G on CX before, from which we deduce
that χ takes values

1 r s
χ 3 0 1
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Now a quick computation gives

〈χ, χ〉 = 2 and 〈1, χ〉 = 1,

from which we conclude that χ = 1 + ψ where ψ is the irreducible character

1 r s
ψ 2 −1 0

In general we have this useful result:

Theorem. (Burnside’s Lemma) Let G act on a set X, and let CX be the permu-
tation representation with character χ. Then

〈1, χ〉 = |{orbits of G in X}|.

Character tables.

Definition. List the conjugacy classes of G, C1, . . . , Cn say, and pick a repre-
sentative gi ∈ Ci (by convention g1 = 1). Then list the irreducible characters
1 = χ1, . . . , χn of G. The character table is the matrix

1 g2 · · · gi · · · gn
1 1 1 · · · 1 · · · 1
...

...
χj · · · · · · · · · χj(gi) · · · · · ·
...

...

χn
...

Example. • G = C3

1 g g2

1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

• G = D6

1 r s
1 1 1 1
χ2 1 1 −1
χ3 2 ω + ω2 0

We had orthogonality of characters before, which corresponds to orthogonality
between the rows of the character table. But we also have

Theorem. (Column orthogonality) Pick gi, gj as above. Then∑
χ∈Irr(G)

χ(gi)χ(gj) = δij |CG(gi)|.

In other words for g, h ∈ G, we have∑
χ∈Irr(G)

χ(g)χ(h) =

ß
0 if g, h not conjugate
|CG(g)| otherwise

In particular, for g = h = 1, this gives |G| =
∑

(dimVi)
2 which we saw before

already.
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All of these results are useful for computing character tables. These are then
useful to understand the structure of the group. Indeed we have the following

Fact. • For a representation ρ of G with character χ, we have

ker ρ = {g ∈ G : χ(g) = χ(1)}.
• Let N be a subgroup of G. Then N is normal if and only if it is an

intersection of kernels of irreducible representations.

From these two facts we can read off all normal subgroups of G from the character
table and determine whether it is simple or not.

Example. We see from our above example that D6 is not simple because kerχ2

was non-trivial.

5. Induction and Lifting

Suppose that H is a subgroup of G. Then we can easily obtain representations
of H from representations of G by restricting, i.e if ρ is a representation of G then
ρ|H is a representation of H. How do we go the other way? More generally, how
can we use representations of smaller groups to construct new representations of
bigger groups?

Lifting. Suppose N is a normal subgroup, and that V is a representation of G/N .
Then we get a representation of G by composing the homomorphisms

G→ G/N → GL(V )

where G → G/N is just the projection onto the quotient. This process is called
lifting. All the representations of G with kernel containing N arise in this way.

Induction. Now we let H be a subgroup of G, and let V be a representation of
H. Induction is process in which one constructs a representation IndGHV of G from
V .

Definition. The vector space IndGHV is defined to be the space with basis given
by the abstract symbols tj ⊗ vi where t1, . . . , tn is a left transversal, i.e a set of left

coset representatives for H, and v1, . . . , vm is a basis of V . The G-action on IndGHV
is given by g · (tj ⊗ vi) := ts ⊗ hvi where ts is the unique coset representative such
that gtj ∈ tsH, and h = t−1s gtj .

Secret. Really, as a CG-module, IndGHV = CG⊗CH V but this will only make sense
after you see tensor products over arbitrary rings in the relevant Part III course.

But what’s really useful to us is the formula for characters. Let ψ be a character
of H and ket g ∈ G. Let CG(g) denote the conjugacy class of g in G, and say we
have

CG(g) ∩H =
m⋃
i=1

CH(xi)

where the xi are the representatives of the m conjugacy classes of elements of H
which are conjugate to g in G. Then we have

IndGHψ(g) =

®
0 if m = 0

|CG(g)| ·
∑m
i=1

ψ(xi)
|CH(xi)| if m ≥ 1
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Example. G = D6 and H = C3 = 〈r〉. The character table of H is

1 r r2

1 1 1 1
χ2 1 ω ω2

χ3 1 ω2 ω

In G:
1 r s

IndGH1 2 2 0

IndGHχ2 2 ω + ω2 0

IndGHχ3 2 ω + ω2 0

Finally, to decompose induced characters into irreducibles, we have the following
important result

Theorem. (Frobenius reciprocity) Let χ be a character of G and ψ be a character
of H. Then

〈ResGHχ, ψ〉H = 〈χ, IndGHψ〉G
where ResGHχ is the character of the same representation when viewed as a repre-
sentation of H.

For the curious: if V is the representation of G with character χ, W is the
representation of H with character ψ, then the above is equivalent to saying

HomH(ResGHV,W ) ∼= HomG(V, IndGHW ).
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