Analysis of Functions (D)

16 lectures, Lent term

Part II Linear Analysis and integration theory from Part II Probability and Measure are essential.

Lebesgue integration theory

Review of integration: simple functions, monotone and dominated convergence; existence of Lebesgue measure; definition of L^p spaces and their completeness. The Lebesgue differentiation theorem, Egorov's theorem, Lusin's theorem. Mollification by convolution, continuity of translation and separability of L^p when $p \neq \infty$ [3]

Banach and Hilbert space analysis

Strong, weak and weak-* topologies. Review of the Riesz representation theorem for Hilbert spaces; reflexive spaces. Orthogonal systems of functions and their completeness. Hermite polynomials, the Haar basis. Compactness: review of the Ascoli–Arzelà theorem; weak-* compactnesss of the unit ball (both the separable and non-separable cases). The Riesz representation theorem for spaces of continuous functions. The Hahn–Banach theorem. Review of the Baire category theorem and its consequences: the open mapping theorem and the Banach–Steinhaus theorem. [5]

Fourier analysis

Definition of Fourier transform in L^1 . Extension to L^2 by density and Plancherel's isometry. Fourier inversion theorem. Duality between regularity in real variable and decay in Fourier variable. Representation of L^2 periodic functions by Fourier series; the Poisson summation formula. Construction of solutions for linear PDEs with constant coefficients. [3]

Generalized derivatives and function spaces

Definition of generalized derivatives and of the basic spaces in the theory of distributions: \mathcal{D}/\mathcal{D}' and \mathcal{S}/\mathcal{S}' . Definition of the Sobolev spaces H^k in \mathbb{R}^d and the periodic *d*-cube. Sobolev embedding. The Rellich–Kondrashov theorem. The trace theorem. Construction and regularity of solutions for the Dirichlet problem of Laplace's equation. [5]

Appropriate books

- H. Brézis Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext, Springer 2011
- A.N. Kolmogorov, S.V. Fomin *Elements of the Theory of Functions and Functional Analysis*. Dover Books on Mathematics 1999
- E.H. Lieb and M. Loss Analysis. Second edition, AMS 2001