Measure Theory Catch-up Lecture: Exercises.

Jo Evans

October 5, 2015

1 What is a Measure Space

Here are some hopefully straightforward exercises:

- 1. Prove that if $(A_n, n \in \mathbb{N}) \subset \mathcal{E} \Rightarrow \bigcap_n A_n \in \mathcal{E}$.
- 2. Prove that if E is a countable set then $\mathcal{P}E$ is a σ -algebra.
- 3. Is it always the case that if all the A_n are in \mathcal{E} then $\mu(\bigcup_n A_n) \leq \sum_n \mu(A_n)$.
- 4. If A_n are all in \mathcal{E} and $\mu(\bigcap_n A_n) = 0$ is it necessarily the case that $\bigcap_n A_n = \emptyset$.
- 5. If \mathcal{E} is both a π -system and a *d*-system prove that it is a σ -algebra.
- 6. Speculate on how Lebesgue measure is defined in higher dimensions.

2 Functions

Exercises on functions:

1. Prove that it is only necessary to check the measurablity criterion on a π -system generating the σ -algebra.

2. Prove that a continuous function between two topological spaces with their Borel σ -algebras is measurable.

3. Prove that if f, g are measureable functions into \mathbb{R} with its Borel σ -algebra then fg and f + g are also measurable.

4. Prove that if f_n are all measurable functions into \mathbb{R} with its Borel σ -algebra then $\inf_n f_n$, $\sup_n f_n$, $\lim \inf_n f_n$ and $\limsup_n f_n$ are all measurable.

5. Try and come up with sequences that converge either in measure or probability but not in both.

3 Integration

1. Find a sequence of measurable functions f_n such that f_n converges to some function f with $\mu(|f|) < \infty$, but $\mu(f_n)$ doesn't converge to $\mu(f)$.

2. The sequence

$$f_n(x) = \sum_{k=1}^{2^n} \sqrt{\frac{k}{2^b}} \mathbf{1}_{[(k-1)/2^n, k/2^n)}$$

converges to f(x). Prove that $\mu(f_n)$ converges to $\mu(f)$ where μ is Lebesgue measure on [0, 1].

3. Check that the π -system defined in the making of the product measure space is in fact a π -system.

4. Find a function which is in $L^2(\mathbb{R})$ but not in $L^1(\mathbb{R})$ and vice versa.

4 Inequalities

1. Show if X is a Normal random variable with mean 0 and variance 1. Show that

$$\mathbb{P}(X \le \alpha) \ge \frac{1}{2\alpha^2}$$

2. Show that if $f,g\in L^2(\mu)$ then

$$|\int f(x)g(x)\mu(\mathrm{d}x)| \le \frac{1}{2}\int |f(x)|^2\mu(\mathrm{d}x) + \frac{1}{2}\int |g(x)|^2\mu(\mathrm{d}x).$$

3. Show that if $f \in L^1 \cap L^2$ then

$$\int_0^T f(x)^2 \mathrm{d}x \le \frac{1}{T} \left(\int_0^T f(x) \mathrm{d}x \right)^2.$$