Logic

The following multiple choice self-test questions are intended to give an indication whether you have prerequisites for the Part III courses in logic. All of them are basic and easy questions in logic: you should get most of them right without effort or preparation. [Last updated: 19 August 2024.]

- 1. Let \mathcal{L} be a countable language and $S^{\mathcal{L}}$ the set of \mathcal{L} -sentences. Only one of the following statements is true. Which one?
 - \Box **A** The set S^{*L*} is always uncountable.
 - \Box **B** The set $\mathrm{S}^{\mathcal{L}}$ is always countably infinite.
 - \Box **C** The set $S^{\mathcal{L}}$ is always countable, but can be finite for some choices of \mathcal{L} .
 - \square **D** The set $S^{\mathcal{L}}$ can be countable or uncountable, depending on the choice of \mathcal{L} .
- 2. Let \mathcal{L} be a countable language, Φ be a set of \mathcal{L} -sentences, and \mathfrak{T}^{Φ} be the term model of Φ (as constructed in Henkin's proof of the completeness theorem). Only one of the following statements is true. Which one?
 - \Box **A** It is always the case that $\mathfrak{T}^{\Phi} \models \Phi$.
 - \square **B** The set Φ is consistent if and only if $\mathfrak{T}^{\Phi} \models \Phi$.
 - \Box **C** If Φ is *negation-complete* (i.e., for all φ , we have that either $\Phi \models \varphi$ or $\Phi \models \neg \varphi$), then $\mathfrak{T}^{\Phi} \models \Phi$.
 - \Box **D** None of the above.
- 3. Let \mathcal{L} be any language and Φ be a set of \mathcal{L} -sentences. Of the following four statements, only one cannot be true of Φ . Which one?
 - \Box **A** The set Φ has no infinite models.
 - \square **B** The set Φ has finite models of arbitrarily large size.
 - \Box C If \mathfrak{M} is a model of Φ , then the cardinality of the universe of \mathfrak{M} is a square number (i.e., n^2 for some $n \in \mathbb{N}$).
 - \Box **D** The set Φ has no finite models.
- 4. Let \mathcal{L} be the language with a single binary function symbol \times and consider the rational numbers with multiplication (\mathbb{Q}, \cdot) as an \mathcal{L} -structure. Only one of the following sets is not \mathcal{L} -definable in (\mathbb{Q}, \cdot) . Which one?
 - $\Box \mathbf{A} \{-2\}.$
 - $\square \mathbf{B} \{-1\}.$
 - $\Box \mathbf{C} \{0\}.$
 - \Box **D** {1}.

- 5. Let \mathcal{L} be a language and κ be a cardinal. A set Φ of \mathcal{L} -sentences is called *finitely categorical* if any two finite models of the same cardinality are isomorphic; it is called *countably categorical* if any two countable models of the same cardinality are isomorphic; it is called *uncountably categorical* if any two uncountable models of the same cardinality are isomorphic. Exactly one of the following statements is true. Which one?
 - \Box **A** Every finitely categorical theory is countably categorical.
 - \square **B** Every countably categorical theory is uncountably categorical.
 - \Box C Every uncountably categorical theory cannot have finite models.
 - \Box **D** None of the above.
- 6. For structures \mathfrak{M} and \mathfrak{N} , we write $\mathfrak{M} \cong \mathfrak{N}$ for " \mathfrak{M} and \mathfrak{N} are isomorphic", $\mathfrak{M} \equiv \mathfrak{N}$ for " \mathfrak{M} and \mathfrak{N} are elementarily equivalent", and $\mathfrak{M} \preccurlyeq \mathfrak{N}$ for " \mathfrak{M} elementarily embeds into \mathfrak{N} ". One of the following statements is false. Which one?
 - \Box **A** If $\mathfrak{M} \cong \mathfrak{N}$, then $\mathfrak{M} \equiv \mathfrak{N}$.
 - \square **B** If $\mathfrak{M} \equiv \mathfrak{N}$, then $\mathfrak{M} \preccurlyeq \mathfrak{N}$.
 - \Box C If $\mathfrak{M} \preccurlyeq \mathfrak{N}$, then $\mathfrak{M} \equiv \mathfrak{N}$.
 - \Box **D** If $\mathfrak{M} \cong \mathfrak{N}$, then $\mathfrak{M} \preccurlyeq \mathfrak{N}$.
- 7. Let C be the class of all infinite groups. One of the following statements is true. Which one?
 - \Box **A** The class **C** is not axiomatisable in the language of groups.
 - \square B The class C is axiomatisable in the language of groups, but not finitely axiomatisable.
 - \Box C The class C is finitely axiomatisable in the language of groups.
 - \Box **D** Whether the class **C** is axiomatisable or not is independent of the axioms of set theory.
- 8. Only one of the following classes of structures is axiomatisable in the natural language relevant for it. Which one?
 - \Box A The class of finite rings.
 - \square **B** The class of countable fields.
 - \Box C The class of uncountable graphs.
 - \Box D The class of groups isomorphic to a subgroup of the monster group.
- 9. Consider the language with one binary relation symbol R and the set Φ containing the axioms

$$\begin{array}{ll} \varphi_{\mathrm{R}} & \forall x(x \ R \ x), \\ \varphi_{\mathrm{S}} & \forall x \forall y(x \ R \ y \to y \ R \ x), \\ \varphi_{\mathrm{T}} & \forall x \forall y \forall z((x \ R \ y \land y \ R \ z) \to x \ R \ z), \\ \varphi_{\leq 2} & \forall x \forall y \forall z(x \ R \ y \lor y \ R \ z \lor x \ R \ z), \\ \varphi_{\geq 2} & \exists x \exists y(\neg x \ R \ y), \text{ and} \\ \varphi_{n} & \forall x \exists y_{1} \dots \exists y_{n}(\bigwedge_{\substack{1 \le k, \ell \le n \\ k \ne \ell}} y_{k} \ne y_{\ell} \land \bigwedge_{1 \le k \le n} x \ne y_{k} \land x \ R \ y_{k}), \text{ for all } n \end{array}$$

Only one of the following statements is true. Which one?

- \Box **A** The set Φ is inconsistent.
- \square **B** The set Φ has finite models.
- \square **C** The set Φ has at least two non-isomorphic models of the same size.
- \Box **D** All models of Φ are countably infinite.