Galois Theory Additional Exercises

Zexiang Chen

While doing these exercises, you may wish to refer to the notes by Dr.T.Yoshida: https://www.dpmms.cam.ac.uk/~ty245/Yoshida_2012_Galois.pdf which cover everything (perhaps more than enough) you need to know for Galois Theory. There are some useful facts in these exercises. Some of them might be challenging!

- 1. Let L/M/K be field extensions such that [L:K] = p where p is a prime. Show that M = K or M = L.
- 2. Let L/K be an algebraic field extension and $\psi : L \to L$ a K-homomorphism. By considering the minimal polynomials, show that for each $\alpha \in L$, there exists $\beta \in L$ such that $\psi(\beta) = \alpha$. Hence show that ψ is an isomorphism.
- 3. Can you find an inseparable irreducible polynomial $f(X) \in \mathbb{F}_p[X]$? Perhaps it is helpful to think about some condition on the derivative of the any inseparable polynomial.
- 4. Let L/K be a finite Galois extension and F, M intermediate fields, i.e. $K \subset F, M \subset L$. What is the subgroup of $\operatorname{Gal}(L/K)$ corresponding to the subfield $F \cap M$? What about FM? (FM is the smallest field inside L containing F and M).
- 5. Let $L_1/\mathbb{Q}, L_2/\mathbb{Q}$ be quadratic field extensions such that $L_1 = \mathbb{Q}(\sqrt{a}), L_2 = \mathbb{Q}(\sqrt{b})$. Show that $L_1 = L_2$ if and only if a/b is a square in \mathbb{Q}^{\times} . Moreover, let K be a field containing an nth primitive root of unity for some n. Let $a, b \in K$ such that $f(X) = X^n a$ and $g(X) = X^n b$ are irreducible. Show that f and g have the same splitting field if and only if $b = c^n a^r$ for some $c \in K$ and $r \in \mathbb{N}$ with gcd(r, n) = 1.
- 6. Let $f(X) = X^5 2 \in \mathbb{Q}[X]$ and K be the splitting field of f(X). Find the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
- 7. Show that the minimal polynomial of $\sqrt{3} + \sqrt{5}$ is reducible modulo p for every prime p. This gives an example of an irreducible polynomial which is reducible in \mathbb{F}_p for each p.
- 8. Let ζ_n be a primitive *n*th root of unity. Determine (i) $\mathbb{F}_2(\zeta_4)$ (ii) $\mathbb{F}_2(\zeta_7)$ (iii) $\mathbb{F}_3(\zeta_{10})$. Can you find some general pattern to determine $\mathbb{F}_p(\zeta_n)$?
- 9. Let L/K be an extension of finite fields. Show that $L = K(\zeta_n)$ for some n. You will (probably) see a similar result for the case $K = \mathbb{Q}$ in PartIII, which is called Kronecker-Weber theorem. It states that every abelian extension of \mathbb{Q} (that is, a Galois extension with abelian Galois group) is contained within some cyclotomic field $\mathbb{Q}(\zeta_n)$.