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These notes are intended for the use of students starting the course “Part III
Infinite Groups”. They are intended to cover concepts which are present in most,
but not all undergraduate curricula in Group Theory, and a few basic facts about
metric spaces whichwe shall use during the course. I anticipate that themajority of
students will be familiar with a large part of this material, but only a minority will
be comfortable with all of it already. Students should check that they understand
everything in these notes, and can reproduce the proofs that I have omitted, as
these concepts will be used frequently and without further comment throughout
the course.

Throughout, G is a group.

Definition 1. LetH ≤ G. A (left) coset ofH in G is a subset of G of the form:

gH = {gℎ ∶ ℎ ∈ H}

for some g ∈ G. The set of all cosets is denoted G∕H; its cardinality, denoted
|G ∶ H|, is the index ofH in G.

Proposition 2. For g1, g2 ∈ G, either g1H = g2H or g1H ∩ g2H = ∅.

Definition 3. A transversal toH inG is a subset T ⊆ G such that for allC ∈ G∕H ,
|C ∩ T | = 1.

Lemma 4. For T any transversal toH in G,

G =
∐

t∈T
tH

and |T | = |G ∶ H|.

Lemma 5. LetH,K ≤ G. Then:
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(i) |H ∶ H ∩K| ≤ |G ∶ K|;

(ii) If K ≤ H then |G ∶ K| = |G ∶ H||H ∶ K|.

Notation 6. We write H ≤f G (respectively H ⊲f G) if H ≤ G (resp. H ⊲ G)
and |G ∶ H| <∞.

Proposition 7. LetH ≤f G. Then there existsN ⊲f G withN ≤ H .

Proof. We give two proofs.
Proof # 1: Let T be a transversal toH in G. Let:

N =
⋂

t∈T
tHt−1.

The index ofN in G is finite by Lemma 5 (i); the other conditions are clear.
Proof # 2: G acts onG∕H by left-multiplication: the actionG×G∕H → G∕H

is given by g(tH) = (gt)H . The stabilizer of the pointH ∈ G∕H under this action
is preciselyH . There is an induced homomorphism � ∶ G → Sym(G∕H). Then
N = ker(�) satisfies the required conditions.

Exercise 8. Give an upper bound for |G ∶ N| in terms of |G ∶ H| (which of the
two above proofs yields the better bound?).

Definition 9. Let S ⊆ G. The subgroup of G generated by S is:

⟨S⟩ =
{

s�11 s
�2
2 ⋯ s�nn ∶ n ∈ ℕ, si ∈ S, �i ∈ {±1}

}

If ⟨S⟩ = G we say S is a generating set for G. G is finitely generated if it has a
finite generating set.

Proposition 10. The set ⟨S⟩ is indeed a subgroup ofG. It is the smallest subgroup
of G containing S, in the sense that: (i) S ⊆ ⟨S⟩, and (ii) whenever S ⊆ H ≤ G,
we have ⟨S⟩ ≤ H .

Proposition 11. Suppose G is a finitely generated group, and let S ⊆ G be a (not
necessarily finite) generating set. Then there exists S ′ ⊆ S a finite generating set
for G.

Proof. Let R be a finite generating set for G. Every element of R is expressible as
a product of elements of S and their inverses. Since R is finite, only finitely many
elements of S appear in these expressions; let S ′ be the set of all such.



Definition 12. Let S ⊆ G. The normal closure of S in G (or the normal subgroup
of G generated by S) is the smallest normal subgroup of G containing S. It is
denoted ⟪S⟫G.

Proposition 13. For any S ⊆ G,

⟪S⟫G = ⟨SG
⟩,

where SG = {gsg−1 ∶ s ∈ S, g ∈ G}.

Theorem 14. LetH ≤f G. Then G is finitely generated iffH is.

Proof. Let T be a transveral to H in G. We may assume e ∈ T . If R is a finite
generating set forH , then S = R ∪ T is a finite generating set for G.

The converse direction is more involved. Let S be a finite generating set for
G. We may assume that for all s ∈ S, s−1 ∈ S. Let R = H ∩ {ts(t′)−1 ∶ s ∈
S; t, t′ ∈ T }. Then R ⊆ H is finite; we claim that it generates H . Let ℎ ∈ H .
Then there exist si ∈ S such that ℎ = s1⋯ sn. Define ti ∈ T recursively via:
t0 = e, and, given ti, let ti+1 be the unique element of T satisfyingH(tis) = Hti+1
(so that tist−1i+1 ∈ R). Then:

ℎ = s1⋯ sn
= s1(t−11 t1)s2(t

−1
2 t2)s3⋯ sn−1(t−1n−1tn−1)sn

= (t0s1t−11 )(t1s2t
−1
2 )⋯ (tn−2sn−1t−1n−1)(tn−1sn).

Since ℎ ∈ H , tn−1sn = tn−1snt−10 ∈ R also, hence ℎ ∈ ⟨R⟩.

The next Theorem is the only result in this document whose proof is not entirely
elementary. The details of the proof will not concern us in this course.

Theorem15 (Classification of finitely generated abelian groups). SetG be a finitely
generated abelian group. Then there is a finite abelian group T , and d ∈ ℕ such
that G ≅ ℤd × T . Moreover T is a direct product of cyclic groups.

Theorem 16 (1st Isomorphism Theorem). Let � ∶ G → H be a homomorphism
of groups. Then ker(�) ⊲ G, and G∕ ker(�) ≅ im(�).

Theorem 17 (2nd Isomorphism Theorem). Let H ≤ G and N ⊲ G. Then N ∩
H ⊲ H , andH∕(N ∩H) ≅ HN∕N .

Theorem 18 (3rd Isomorphism Theorem). Let K,N ⊲ G, with K ≤ N . Then
N∕K ⊲ G∕K and (G∕K)∕(N∕K) ≅ G∕N .



Definition 19. A homomorphism � ∶ G → G is called an endomorphism of G. If
� is bijective, then it is called an automorphism of G.

Proposition 20. The set Aut(G) of all automorphisms of the group G forms a
group under composition of functions, called the automorphism group of G.

We would like to have some techniques for building new groups from old.

Definition 21 (External semidirect product). LetQ,N be groups, and let� ∶ Q→
Aut(N) be a homomorphism. The (external) semidirect product of N by Q (with
respect to �) is the pairQ⋉�N =

(

Q×N, ⋅
)

, where ⋅ is the binary operation on
Q ×N given by:

(q1, n1) ⋅ (q2, n2) =
(

q1q2, �(q−12 )[n1]n2
)

Proposition 22. Under the operation above, Q⋉�N is a group. We have {eQ} ×
N ⊲ Q⋉� N and Q × {eN} ≤ Q⋉� N . MoreoverN ≅ {eQ} ×N and:

(Q⋉� N)∕({eQ} ×N) ≅ Q ≅ Q × {eN}.

Example 23. If � ∶ Q → Aut(N) is the trivial homomorphism, then Q⋉� N is
the direct product Q ×N of Q andN .

Note that there is a potential ambiguity between the notation for the direct
product Q × N (a group) and the Cartesian product Q × N (a set, which is the
underlying set for every external semidirect product ofN by Q). We shall always
refer to a semidirect product with nontrivial homomorphism � as Q ⋉� N , and
never denote it by its underlying set Q ×N .

Definition 24 (Internal semidirect product). Let Q,N ≤ G. Suppose that:

(i) N ⊲ G;

(ii) Q ∩N = {e};

(iii) G = QN = {qn ∶ q ∈ Q, n ∈ N}.

Then we call G the (internal) semidirect product ofN by Q.

Lemma 25. LetN ⊲ G. For g ∈ G, define cg ∶ N → N by cg(n) = gng−1. Then
cg ∈ Aut(N) and g ↦ cg defines a homomorphism Φ ∶ G → Aut(N).



Proposition 26. Suppose G is the internal semidirect product of N by Q. Let
Φ ∶ G → Aut(N) be as in Lemma 25, and let � = Φ ∣H . Then (q, n)↦ qn defines
an isomorphism of groups Q⋉� N ≅ G.

Conversely, for any groups N and Q, and any homomorphism � ∶ Q →
Aut(N), Q⋉� N is the internal semidirect product of {eQ} ×N by Q × {eN}.

Definition 27. For (Gi)i∈I a family of groups indexed by a set I , the direct product
of the Gi is the set of all ordered tuples (gi)i∈I , with gi ∈ Gi, denoted:

∏

i∈I
Gi

and is naturally a group under the operation (gi)(ℎi) = (giℎi). The direct sum of
the Gi is:

⨁

i∈I
Gi = {(gi)i∈I ∶ gi = e for all but finitely many i ∈ I} ⊆

∏

i∈I
Gi

The direct sum is clearly a subgroup of the direct product. They are equal iff
Gi is trivial for all but finitely many i ∈ I . If I = {1, 2}, we may write:

G1 × G2 =
∏

i∈I
Gi =

⨁

i∈I
Gi

instead. The direct productQ×N is a special case of the semidirect product ofN
by Q, corresponding to the trivial homomorphism � ∶ Q→ Aut(N).

Proposition 28. Identifying Gi with a subgroup of
⨁

i∈I Gi in the obvious way,
and supposing Si ⊆ Gi with Gi = ⟨Si⟩ for all i ∈ I , we have:

⨁

i∈I
Gi =

⟨

⋃

i∈I
Si
⟩

.

Definition 29. Given groupsN and Q, we say a group G is an extension ofN by
Q if there existsN ′ ⊲ G withN ′ ≅ N and G∕N ′ ≅ Q.

Example 30. (i) If G is isomorphic to a semidirect product of N by Q, then it
is an extension ofN by Q.

(ii) Both C4 and C2 ×C2 are extensions of C2 by C2, but C4 is not isomorphic to
a semidirect product of C2 by C2.

Proposition 31. Suppose G is an extension ofN by Q.



(i) IfN and Q are finitely generated, then so is G.

(ii) If G is finitely generated, then so is Q.

Remark 32. If G is an extension of N by Q, and G is finitely generated, it does
not follow that N is finitely generated (we shall see examples in the course that
illustrate this). However if G is finitely generated andQ is finite, then by Theorem
14,N is finitely generated too.

The following notation is convenient (and widely used) for describing exten-
sions. If G is an extension of N by Q, then there is an injective homomorphism
� ∶ N → G and a surjective homomorphism � ∶ G → Q satisfying ker(�) =
im(�). We may summarise this data in the following diagram, called a short exact
sequence:

{e} //N � // G � // Q // {e} .

To readers unfamiliar with the notion of an “exact sequence” in algebra, the pres-
ence of the trivial group in the above diagram may seem superfluous. We shall
not comment on the reason for its inclusion here, and just accept it as a notational
convention.

Inwhat follows, and are properties fo groups (for example “finite”, “abelian”,
“cyclic” etc.).

Definition 33. We say a group G is -by- if there exist groups N and Q such
thatN is ; Q is  and G is an extension ofN by Q.

Definition 34. We say that the groupG virtually has the property  (or sometimes
just, G is virtually ) if there existsH ≤f G such thatH is  .

Proposition 35. Suppose that is a property of groups which is inherited by finite-
index subgroups (that is, if G is  and H ≤f G then H is ). Suppose that G is
virtually  . Then G is -by-finite.

Proof. This is immediate from the definitions and Proposition 7.

We now turn, briefly, away from groups and to metric spaces.

Definition 36. A metric space is a pair (X, d), where X is a nonempty set and d
is a function X ×X → [0,∞) satisfying, for all x, y, z ∈ X,

(i) d(x, y) = 0 iff x = y;



(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).

Such a function called a metric on X.

Informally, d(x, y) measures the “distance” between the points x and y in X.
Henceforth let (X, d) be a metric space.

Definition 37. A subset U ⊆ X is open if, for every u ∈ U , there exists � > 0
(depending on u) such that, for all x ∈ X, if d(u, x) < � then x ∈ U .

Proposition 38. Let (X, d) be a metric space.

(i) X and ∅ are open;

(ii) If U, V ⊆ X are open, then so is U ∩ V ;

(iii) If (Ui)i∈I is a family of open sets, then
⋃

i∈I Ui is open.

Thus the metric space (X, d) naturally has the structure of a topological space.

Definition 39. A subset C ⊆ X is closed if, whenever (cn) is a sequence of points
in C and x ∈ X, if d(x, cn)→ 0 as n →∞, then x ∈ C .

Proposition 40. The subset C ⊆ X is closed iff X ⧵ C is open.

Definition 41. A point x ∈ X is isolated if {x} ⊆ X is open.

By Proposition 40, x ∈ X is isolated iff there is no sequence of points (xn) in
X such that d(x, xn)→ 0 as n →∞.


