Ramsey Theory (M16)

Prof. I. B. Leader

Ramsey theory is concerned with the general question of whether, in a large amount of disorder, one can find regions of order. A typical example is van der Waerden's theorem, which states that whenever we partition the natural numbers into finitely many classes there is a class that contains arbitrarily long arithmetic progressions.

The flavour of the course is combinatorial. Ramsey theory is remarkably attractive: we study questions that are very natural and easy to appreciate, but whose answers rely on a great variety of beautiful methods. We shall cover a number of 'classical' Ramsey theorems, such as Gallai's theorem and the Hales-Jewett theorem, as well as some more recent developments. There will also be several indications of open problems. We hope to cover the following material.

Monochromatic Systems

Ramsey's theorem (finite and infinite). Canonical Ramsey theorems. Colourings of the natural numbers; focusing and van der Waerden's theorem. Combinatorial lines and the Hales-Jewett theorem. Applications, including Gallai's theorem.

Partition Regular Equations

Definitions and examples. The columns property; Rado's theorem. Applications. (m, p, c)-sets and Deuber's theorem. Ultrafilters; the Stone-Čech compactification. Idempotent ultrafilters and Hindman's theorem.

Infinite Ramsey Theory

Basic definitions. Not all sets are Ramsey. Open sets and the Galvin-Prikry lemma. Borel sets are Ramsey. Applications.

Prerequisites

There are almost no prerequisites – the course will start with a review of Ramsey's theorem, so even prior knowledge of this is not essential. At various places we shall make use of some very basic concepts from topology, such as metric spaces and compactness.

Literature

- B. Bollobás, Combinatorics, C.U.P. 1986
- R. Graham, B. Rothschild and J. Spencer, Ramsey Theory, John Wiley 1990