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This non-examinable course is intended to be an introduction to the mathematical theory of
Deep Learning. The course is aimed at students with a mathematical background, with the
goal of attracting their attention to this new research field which is nowadays experiencing a
huge development. The course can also be interesting for computer scientists, with experience
(or not) in deep learning, who want to explore the topic from a mathematical viewpoint.

The great success of the application of deep learning techniques to a wide range of real-life
problems has raised a number of mathematical questions, some of them being still unanswered,
or partially answered. We will start by introducing the notation used to describe artificial
neural networks and formulate the underlying learning problems. We will review the most
important theoretical results concerning the approximation and generalization properties of
deep neural networks in the overparametrized regime (infinite width and depth limit), as well
as the behaviour of the optimization algorithms used during training (typically formulated as a
non-convex optimization problem). Then, we will discuss the use of different NN architectures,
which guarantee desirable properties of the learned model. Finally, we will present some of
the applications of deep learning techniques, such as inverse problems, image analysis, and the
numerical approximation of partial differential equations.

The course will cover a selection of topics including:

• Introduction to Deep Learning: formulation of the learning problem, neural network
architectures and types of error.

• Expressivity of Neural Networks: universal approximation of overparametrized neu-
ral networks in different functional spaces.

• Optimization of Deep Neural Networks: convergence of stochastic gradient descent,
loss landscape analysis, implicit regularization, etc.

• Generalization of Neural Networks: connection to kernel methods, Gaussian pro-
cesses and the kernel regime.

• Special architectures: residual NNs, convolutional NNs, scattering transform, equiv-
ariant NNs, etc.

• Applications of deep learning: Physics Informed NNs, Deep Learning for inverse
problems, etc.

Prerequisites

No previous knowledge on deep learning or machine learning is required for this course, which is
mainly addressed to students with a background in mathematics. Concerning the mathematical
knowledge, it is desirable to have some fundamental background on functional analysis, measure
theory and optimization.
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Additional support

Lecture notes will be provided and accompanying office hours will be offered.
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