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Let S = X1 + . . . + XN (if N = 0 then S = 0) be a random sum with
‘steps’ X1, X2, . . . given by independent and identically distributed (iid) positive random
variables, and where the number N of summands is independent of the steps. Show that
S has moment generating function MS(u) = GN [MX1

(u)] where GN is the probability
generating function of N and MX1

is the moment generating function of X1.

A portfolio consists of n independent policies where for policy i, i = 1, . . . , n , the
number of claims during an accounting period is Ni independent of the sizes of claims
which are iid with distribution function Fi.

(a) Suppose that Ni has a Poisson distribution with mean λi. Show that the distribution
of the total amount T claimed on the portfolio during a typical accounting period
has a compound Poisson distribution. In the case where F1 = F2 = . . . = Fn = F

and F (x) = 1−e−x , x > 0, show that the distribution function of T can be written
in the form

FT (x) = a + (1 − a)F̃T (x) , x > 0 ,

where a is a constant in (0, 1) which you should specify, and where F̃T has density

f̃T (x) =
∞∑

k = 1

λk

(eλ
− 1)k!

x k−1e−x

k!
.

(b) Now suppose that, for i = 1, . . . , n , P(Ni = k) = qkp, k = 0, 1, . . . , where
q = 1 − p and 0 < p < 1 , and that F1 = F2 = . . . = Fn = F where F is as in (a).
Show that T is distributed as a random sum, and state the distribution of the steps
and of the number of summands for this random sum. When n = 2 show that

FT (x) = b + (1 − b)F̌T (x) , x > 0 ,

where b is a constant between 0 and 1 and F̌T is a distribution function. State the
value of b and write down a density for F̌T .
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Consider the total amount claimed in a year on a particular risk where the number
of claims N has P(N = n) = pn , n = 0, 1, 2, . . . , and where claims are independent and
identically distributed random variables X1,X2, . . . independent of N . Suppose that

pn =

(

a +
b

n

)

pn−1 , n = 1, 2, . . .

for some constants a and b. Suppose also that the claim sizes are positive and discrete
with P(X1 = j) = fj , j = 1, 2, . . . . Let S be the total amount claimed in a year, and let
gr = P(S = r), r = 0, 1, . . . . Show the following recursion for {gr}

∞

r = 0
:

g0 = p0 , gr =

r
∑

j =1

(

a +
bj

r

)

fj gr−j r > 1 .

Now assume that N has a Poisson distribution with mean λ. Write down the
recursion for {gr}

∞

r = 0
for this case, and derive a recursion for {E(Sk)}∞k = 1

. Use this
recursion to find E(S), var(S) and E

(

(S − E(S))3
)

in terms of λ and the moments of X1.

3

In the classical risk model, let MX(r) be the moment generating function of the
claim sizes, let λ be the claim arrival rate, let the premium loading factor be θ > 0 (so
that the premium rate is c = (1 + θ)λµ where µ is the expected claim size), and let ψ(u)
be the probability of ruin with initial capital u > 0 . You are given that there is a unique
positive solution R of the equation MX(r) − 1 = (1 + θ)µr . Prove that ψ(u) 6 e−Ru for
u > 0 (the Lundberg inequality).

(a) Suppose that the claim sizes are exponentially distributed with mean 1. Find R.

(b) Suppose that the claim sizes have density

fX(x) = e−2x +
1

3
e−2x/3 , x > 0 .

Write down the expected claim size. Show that R is the smaller root of

3(1 + θ) r2 − (8 θ + 5) r + 4 θ = 0 .

If mistakenly the claims are assumed to be exponentially distributed with the same
mean, compare the resulting upper bounds on the probability of ruin given by the
Lundberg inequality.

Actuarial Statistics [TURN OVER
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Let Xi be the amount claimed on a risk in year i, i = 1, 2, . . . , and suppose that,
given θ, the Xi’s are independent and identically distributed with density

f(x | θ) =
θk e−θ/x

x k+1(k − 1)!
, x > 0 ,

where k > 2 is a known positive integer. Suppose that the prior density of θ is

π(θ) =
λα θα−1 e−λθ

(α − 1)!
, θ > 0 ,

where α is a known positive integer and λ > 0 is known. Suppose that X1, . . . ,Xn

are observed and consider µ(θ) = E(Xn+1| θ). Find c0, c1, . . . , cn in terms of known

quantities such that E

[

(

µ(θ)− c0 −
∑n

i = 1
ciXi

)2
]

is minimised. Define what is meant

by a credibility estimate, and show that c0 +
∑n

i=1
ci Xi can be written in the form of a

credibility estimate. Discuss the effect on the credibility factor as

(a) k increases while α and λ remain fixed;

(b) the prior variance of θ decreases while the prior mean of θ and k remain fixed.

Find the Bayesian estimate of E(Xn+1| θ) under quadratic loss. State whether or
not this can be written in the form of a credibility estimate.

[ Hint:

(i) You may assume without proof that if Y has density

f(x) =
θke−θ/x

xk+1(k − 1)!
, x > 0 ,

where k ∈ {3, 4, . . .} and θ > 0 , then

E(Y ) =
θ

(k − 1)
, E(Y 2) =

θ2

(k − 1) (k − 2)
, and var(Y ) =

θ2

(k − 1)2 (k − 2)
.

(ii) Let random variables U , V and W be such that U and V have finite second moments.
Then

cov (U, V ) = E
(

cov (U, V |W )
)

+ cov
(

E(U |W ), E(V |W )
)

.
]

END OF PAPER
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