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(a) Let (Xn, n > 0) be a sequence of random variables, and let X be a random variable.
What does it mean to say that Xn converges to X in distribution? Show that if Xn

and X take values in {0, 1, . . . } , then this is equivalent to

P (Xn = k) → P (X = k)

as n → ∞ , for every k ∈ {0, 1, . . .} . Let cn be a sequence of nonnegative numbers
such that cn → c > 0 as n → ∞ . Let Xn have a binomial distribution with parameters
(n, cn/n). Show that Xn converges to X in distribution, for some random variable X
to be determined.

(b) Let λ > 0 , and suppose that N = ⌊λn⌋ balls are placed uniformly at random,
independently from one another, in n urns labelled 1 through n. Let Zn(i) denote
the total number of balls in urn number i when all balls have been placed. What
is the distribution of Zn(i) for a fixed 1 6 i 6 n ? Explain briefly why the random
variables (Zn(i))1 6i 6n cannot be independent. Find a random variable Z such that
Zn(i) → Z in distribution as n → ∞ .

(c) Deduce the following: let Wn denote the number of empty urns when all balls have
been placed. Then as n → ∞ ,

E(Wn) ∼ e−λ n ,

i.e, the ratio of the two sides converges to 1.
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Let X and Y be two independent Gaussian random variables with mean 0 and
variance 1.

(a) By studying the characteristic functions or otherwise, show that Z = X − Y is a
Gaussian random variable. What is its variance? Deduce that as ε → 0 ,

P (|X − Y | < ε) ∼ ε√
π

,

i.e., the ratio of the two sides tends to 1.
[Hint: You may use without proof the following fact from calculus: if f : R → R is

continuous, then for all x ∈ R , as ε → 0 ,
∫

x+ε

x−ε
f(s) ds ∼ 2 εf(x) .]

(b) Fix x ∈ R , and ε > 0 . Express P (X 6 x, |X − Y | < ε) as a double integral. Show
that

P (X 6 x, |X − Y | < ε) ∼ ε

π

∫
x

−∞

e−s
2

ds

as ε → 0 . You may take limits under the integral sign without justification.

(c) Let Xε denote the law of X given that |X − Y | < ε . Deduce from parts (a) and (b)
above that Xε converges in distribution towards a certain random variable W , which
you should identify.

(d) Now, consider the pair of random variables (X, X−Y ). Write down the joint density of
this pair of random variables. What is the conditional density of X given X−Y = 0?
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(a) State and give a proof of the Borel-Cantelli lemmas.

(b) Let X1, . . . Xn be random variables such that var(Xi) < ∞ for all 1 6 i 6 n . Show
that

var(X1 + . . . + Xn) =
n∑

i=1

var(Xi) + 2
∑

1 6 i< j6n

cov(Xi, Xj) .

[Hint: it may help to introduce the random variable Yi = Xi − E(Xi).]

Hence deduce that var(X1 + . . . + Xn) < ∞ .

(c) Let (A1, A2, . . .) be a sequence of events such that
∑

∞

i=1
P(Ai) = ∞ . We also assume

that these events are pairwise independent, i.e., for every i 6= j , Ai and Aj are
independent. For k > 1 define a random variable Nk by

Nk =

k∑

i=1

1Ai
.

Let mk = E(Nk). Show that mk → ∞ as k → ∞ and that var(Nk) 6 mk .

(d) Using Chebyshev’s inequality, show that P (Nk 6 mk/2) → 0 as k → ∞ . Conclude
that the events Ai occur infinitely often almost surely. Explain briefly why this result
is stronger than the second Borel-Cantelli lemma.
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Let S = {1, 2, 3} and consider a Markov chain X = (X0, X1, . . . ) with values in S
defined by the transition matrix P defined as follows:

P =





1/3 2/3 0
1/3 0 2/3
0 0 1



 .

(a) Draw a diagram to represent the possible one-step transitions of X , including the
transition probabilities. What happens if X0 = 3? Is X irreducible?

(b) Define a stopping time τ by τ = inf{n > 0 : Xn = 3}. For n > 0 and x ∈ S define
αn(x) = Px(τ > n). Show αn(2) = 1

3
αn−1(1), and deduce a recurrence relation for

αn(1). Deduce that there exists A,B ∈ R and λ > µ such that αn(1) = Aλn + Bµn

(it is not asked to compute A and B but you should find the value of λ and µ).
Conclude that

αn(1) ∼ A

(

2

3

)n

as n → ∞ , where A ∈ R is the same as above.

(c) Let S′ = {1, 2}. Using part (b) above, compute for x, y ∈ S′,

q(x, y) = lim
n→∞

Px(X1 = y | τ > n) .

Show that, for any k > 1 and x1, . . . , xk ∈ S′, as n → ∞ :

lim
n→∞

Px(X1 = x1, . . . , Xk = xk | τ > n) = Px(Y1 = x1, . . . , Yk = xk)

where Y = (Y0, Y1, . . . ) is the Markov chain on S′ with transition probabilities
determined by q(x, y).

(d) Determine whether or not Y has an invariant distribution, and find the invariant
distribution if it exists.
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A gambler plays at a game of coin tossing against a casino. He adopts the following
strategy. He always bets on heads, and retires from the game the first time the coin comes
up tails, or in any case after three rounds, whichever comes first. Each time he wins his
bet, the casino pays him double his bet, and he reinvests his winnings in the next round.
His initial fortune is 0 and his initial bet is 1, in pounds. Thus, at the end of the first
round, his total winnings may be 2 or 0 (corresponding to a fortune of 1 or −1), at the
second round his total winnings may be 4 or 0 (corresponding to a fortune of 3 or −1),
and at the third round his winnings may be 8 or 0 (corresponding to a fortune of 7 or −1).

(a) Let Y be fortune of the player at the end of the game, in pounds. Assuming the coin
is fair, what is the probability mass function of Y ? Show that E(Y ) = 0 .

(b) The casino now tosses a fair coin infinitely often and we denote by (X1, X2, . . . ) the
successive outcomes. Before each time i = 1, 2, . . . , a new gambler arrives and plays
the game described above part (a), using the outcomes (Xi, Xi+1, Xi+2). Note that
outcome Xi may be relevant to gamblers i, i−1, i−2 if they have not retired already.
We are interested in the time τ it takes for one of the gamblers to win, i.e., for the
pattern HHH to occur in this sequence.

Let Mn denote the cumulative fortune of gamblers 1 through n at time n, and let
Gn denote the cumulative winnings of players 1 though n by time n. Show that
Mn = −n + Gn . Explain why (M1, M2, . . . ) is a martingale with respect to the
filtration generated by (X1, X2, . . . ).

[It may help to note that each gambler’s bet is fair no matter how much they are
gambling.]

(c) Deduce from part (b) that for all n > 1 , E(Mn∧τ ) = 0 . [Any application of a theorem
from the course must be properly justified.] Show that Gτ = 14 and that |Gn| 6 14
for all n 6 τ . Deduce that E(τ) = 14 .

(d) Suppose now that the pattern we are interested in is HTH. Let τ ′ be the time this
pattern first occurs in the sequence of coin tosses. By changing the strategy of each
gambler so that they can only win if the pattern HTH occurs, show using the same
method that now E(τ ′) = 10 . (Non-examinable: does this surprise you?)

END OF PAPER
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