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1 Consider a one-period (d + 1)-asset market model where asset 0 is a numéraire
asset. What is an arbitrage strategy? Show that there is no arbitrage if there exists a
positive random variable ρ such that

S
(i)
0 = E[ρS

(i)
1 ] (*)

for each i ∈ {0, . . . , d} where S
(i)
t is the price at time t of asset i.

What does it mean to say a contingent claim is attainable? Prove that if every
contingent claim in this market is attainable, then there is at most one positive random
variable ρ satisfying equation (*).

Now consider a two-asset model with prices given by

(S(0), S(1)) (3, 6)

(4, 5)

1/3
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1/3
//

1/3 ##GGGGGGGG
(5, 4)

(6, 3)

Find all positive random variables ρ satisfying equation (*). Show by example that there
exists a claim that is not attainable.
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2

Let Z1, Z2, . . . be a sequence of independent positive random variables. Suppose Y0

is a positive constant, and let Yt = Z1Z2 · · ·ZtY0 for t ∈ {1, 2, . . .}. Fix T > 0 and let U be
the Snell envelope of the process (Yt)t∈{0,...,T}. Show that there is a sequence of positive
constants c0, . . . , cT such that

Ut = Ytct.

Now consider a discrete-time, two-asset market model with bank account Bt =
(1 + r)t, stock price St = (1 + R1)(1 + R2) · · · (1 + Rt)S0, where S0 is a positive constant
and R1, R2, . . . is a sequence of independent random variables with identical distribution

P(Rt = ε) =
1

2
+

r

2ε
and P(Rt = −ε) =

1

2
−

r

2ε
.

Here r and ε are constants such that 0 6 r < ε < 1. Show that there is no arbitrage in
this market. You may use a standard no-arbitrage theorem without proof as long as it is
carefully stated.

In this market, there is an American contingent claim with maturity T > 0, which
pays ξt = S2

t if exercised at time t, for any 0 6 t 6 T . Using the fact that the market is
complete and a standard theorem on American options, find the time 0 replication cost
of this option in terms of S0, T , r and ε. How many shares of the stock should the seller
of the option hold between time 0 and time 1 to hedge the optimally exercised claim?

3 Suppose a market has d + 1 assets with prices given by

dBt = rtBtdt

and

dS
(i)
t = S

(i)
t



µ
(i)
t dt +

d
∑

j=1

σ
(i,j)
t dW

(j)
t





for i ∈ {1, . . . , d} where the adapted processes (rt)t∈R+
, (µ

(i)
t )t∈R+

and (σ
(i,j)
t )t∈R+

are

bounded and continuous, and the Brownian motions (W
(i)
t )t∈R+

are independent.

What is an admissible trading strategy? What is an arbitrage? Show that if the
d × d matrix-valued process (σ−1

t )t∈R+
is bounded, then the market has no arbitrage.

Standard results from stochastic calculus may be used without proof, but they must be
stated clearly.

A market is said to satisfy the Law of One Price if it has the property that S
(i)
T = S

(j)
T

almost surely implies S
(i)
t = S

(j)
t almost surely for all 0 6 t 6 T . Give an example

of a continuous time market model with no arbitrage which does not obey the Law of
One Price. You may use without proof the following fact about a Brownian motion X:
for every k ∈ R, the hitting time τ = inf{t > 0 : Xt = k} is finite almost surely.
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4 Consider a two-asset model where asset 0 is cash, so that the price of asset 0 is
Bt = 1 for all t > 0. Asset 1 has prices given by

dSt = a(St)dWt

where the given function a is positive and smooth, and such that a and its derivative a′

are bounded. Let ξt be the time-t price of a (European) call option with maturity T and
strike K. Finally, let V : [0, T ] × R → R+ satisfy the partial differential equation

∂

∂t
V (t, S) +

a(S)2

2

∂2

∂S2
V (t, S) = 0

with boundary condition
V (T, S) = (S − K)+.

Show that there is no arbitrage in the augmented market if ξt = V (t, St). A standard
no-arbitrage theorem can be used without proof as long as it is carefully stated.

Show that the call option can be replicated by holding πt = U(t, St) units of stock,
where U : [0, T ] × R → R satisfies

∂

∂t
U(t, S) + a(S)a′(S)

∂

∂S
U(t, S) +

a(S)2

2

∂2

∂S2
U(t, S) = 0

U(T, S) = 1{S>K}.

You may assume that U and V are smooth in [0, T ) × R.

Let (Zt)t>0 be the martingale defined by Z0 = 1 and

dZt = Zta
′(St)dWt.

Let Mt = Ztπt. Show that M is a local martingale. Assuming M is a true martingale, de-
rive the inequality 0 6 πt 6 1 almost surely.
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5 Let Z ∼ N(0, 1) be a standard normal random variable, and let

F (v,m) = E[(e−v/2+
√

vZ
− m)+].

Express F (v,m) in terms of the standard normal distribution function. Hence, or
otherwise, prove the identity

F (v,m) = 1 − m + m F (v, 1/m).

Now consider a two asset model, where asset 0 is a bank account Bt = ert for a
positive constant r, and asset 1 is a stock with prices St given by

St = S0e
(r−σ2/2)t+σWt

for a positive constant σ and Brownian motion W . Show that there is no arbitrage if the
time-t price of a call with maturity T and strike K is given by

Ct(T,K) = StF [(T − t)σ2,Ke−r(T−t)/St].

You may use a standard no-arbitrage theorem without proof as long as it is carefully
stated.

Now, assuming that Ct(T,K) is as above, show that there is no arbitrage if the
time t price of a put option with maturity T and strike K is given by the put-call parity
formula

Pt(T,K) = Ke−r(T−t)
− St + Ct(T,K).

Hence, establish the put-call symmetry formula

Pt(T,K) = KF [(T − t)σ2, Ste
r(T−t)/K].
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6 What is a (zero-coupon) bond? How are the bond prices related to the forward
rates?

Consider a short interest rate process (rt)t∈R+
satisfying the following stochastic

differential equation:
drt = a(rt)dt + b(rt)dWt

for two given smooth functions a and b and a Brownian motion W . Let the function F

satisfy the following integral-differential equation

∂F

∂θ
(θ, r) = a(r)

∂F

∂r
(θ, r) +

b(r)2

2

∂2F

∂r2
(θ, r) − b(r)2

∂F

∂r
(θ, r)

∫
θ

0

∂F

∂r
(s, r)ds

with initial condition F (0, r) = r. Show that there is no arbitrage if the forward rates
are given by ft(T ) = F (T − t, rt). You may use a standard no-arbitrage theorem without
proof as long as it is carefully stated.

Now suppose a(r) = a0 and b(r) = b0 for some constants a0 and b0. Show that there
is no arbitrage if ft(T ) = A(T−t)rt+B(T−t) for some functions A and B, which you should
find.

END OF PAPER
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