

M. PHIL. IN STATISTICAL SCIENCE

Monday, 8 June, 2009 1:30 pm to 4:30 pm

STOCHASTIC CALCULUS AND APPLICATIONS

Attempt no more than **FOUR** questions.

There are **SIX** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

 $\begin{array}{c} \textbf{SPECIAL} \ \textbf{REQUIREMENTS} \\ None \end{array}$

Cover sheet Treasury Tag Script paper

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- 1 (a) Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a filtered probability space. Define the previsible σ algebra \mathcal{P} and explain what is meant by a simple process. (We let \mathcal{S} be the space of
 simple processes). Give the definition of the stochastic integral $H \cdot M$ of a simple process $(H_s, s \geq 0)$ with respect to a continuous martingale M which is bounded in L^2 . (We
 let \mathcal{M}_c^2 be the space of continuous martingales bounded in L^2). Give the definition of
 the quadratic variation [M] of a continuous local martingale M and explain how you can
 compute it from the path $(M_t, t \geq 0)$ using an approximation procedure. [You are not
 required to prove the existence of the quadratic variation or to justify your approximation
 procedure.]
 - (b) Let $H \in \mathcal{S}$ and $M \in \mathcal{M}_c^2$. Show that $H \cdot M \in \mathcal{M}_c^2$ and that

$$\mathbb{E}\left((H\cdot M)_{\infty}^{2}\right) \leqslant \|H\|_{\infty}^{2} \mathbb{E}((M_{\infty} - M_{0})^{2}).$$

(c) Show that for $H \in \mathcal{S}$ and $M \in \mathcal{M}_c^2$, we have in fact the equality

$$\mathbb{E}\left((H\cdot M)_{\infty}^{2}\right) = \mathbb{E}\left(\int_{0}^{\infty} H_{s}^{2} d[M]_{s}\right).$$

Deduce that $[H \cdot M] = H^2 \cdot [M]$. [Hint: You may use the Optional Stopping Theorem provided that you state it clearly.]

Let M be a continuous local martingale and let A be a finite variation process such that for some nonrandom constant $K < \infty$ we have:

$$\sup_{s\geqslant 0}(|M_s|+V_s)\leqslant K\tag{1}$$

where V_s denote the total variation of A at time s. Let $X_t = M_t + A_t$, and assume that $M_0 = A_0 = 0$.

(a) Let ϕ be a nondecreasing function of class \mathcal{C}^1 such that $\phi(x) = -1$ for $x \leq 0$ and $\phi(x) = 1$ for $x \geq 1$. For all $n \geq 1$, define a function f_n such that $f_n(0) = 0$ and for all $x \in \mathbb{R}$, $f'_n(x) = \phi(nx)$. Show that $f_n(X_t)$ is a continuous semimartingale and give its Doob-Meyer decomposition. Show that as $n \to \infty$,

$$\int_0^t f_n'(X_s)dM_s \longrightarrow \int_0^t \operatorname{sgn}(X_s)dM_s$$

in the u.c.p. sense (uniformly on compacts in probability), where $\operatorname{sgn}(x) = 1_{\{x>0\}} - 1_{\{x\leqslant 0\}}$ is the (left-continuous) function which gives the sign of x. [Hint: Apply Itô's isometry property to the difference of those two integrals.]

(b) Show that as $n \to \infty$,

$$\int_0^t f_n'(X_s)dA_s \longrightarrow \int_0^t \operatorname{sgn}(X_s)dA_s$$

almost surely for all $t \ge 0$ simultaneously.

(c) Deduce from (a) and (b) that if $Z_t = |X_t| - \int_0^t \operatorname{sgn}(X_s) dX_s$, then Z is a nondecreasing process almost surely. Conclude that |X| is a continuous semimartingale. Show that the result remains true if we no longer assume (1), i.e., if X is any continuous semimartingale starting at 0.

3 (a) State the Dubins-Schwartz theorem. Let (M^1, M^2) be two continuous local martingales in a common filtration $(\mathcal{F}_t, t \geq 0)$, such that $[M^1, M^2]_t = 0$ and $[M^1]_t = [M^2]_t$, almost surely for all $t \geq 0$. (Here [M, N] denotes the covariation of the two continuous local martingales M and N, and [M] stands for [M, M]). We also assume that if $A_t = [M^1]_t$, then $A_{\infty} = \infty$ almost surely. Show that if $\tau_r = \inf\{t \geq 0 : A_t \geq r\}$, then

$$B_r = (M_{\tau_r}^1, M_{\tau_r}^2), r \geqslant 0,$$

defines a 2-dimensional Brownian motion in the filtration $(\mathcal{G}_r)_{r\geqslant 0}$ defined by $\mathcal{G}_r = \mathcal{F}_{\tau_r}$ for all $r\geqslant 0$. [You may use any result from the course provided that it is clearly stated.]

(b) Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a filtered probability space such that the filtration $(\mathcal{F}_t)_{t \geq 0}$ is right-continuous and \mathcal{F}_0 contains all zero probability events. Let $(\beta_t, t \geq 0)$ and $(\theta_t, t \geq 0)$ be two independent $(\mathcal{F}_t)_{t \geq 0}$ -Brownian motions in \mathbb{R} , and define a process $(Z_t, t \geq 0)$ with values in the complex plane as follows: let $R_t = \exp(\beta_t)$, and let

$$Z_t = R_t e^{i\theta_t}, \quad t \geqslant 0.$$

Let X_t and Y_t denote respectively the real and imaginary parts of Z_t . Show that X and Y are continuous local martingales and that

$$[X]_t = [Y]_t \quad \text{and} \quad [X, Y]_t = 0$$

for all $t \ge 0$. Show that $[X]_{\infty} = \infty$ almost surely. [Hint: the recurrence and the strong Markov property of $(\beta_t, t \ge 0)$, together with the law of large numbers, may be helpful for this result.]

(c) Deduce from (a) that there exists $(\tau_r, r \ge 0)$ such that $(Z_{\tau_r}, r \ge 0)$ is a two-dimensional Brownian motion started at $z_0 = (1,0)$ in an appropriate filtration. Use this to show that Brownian motion in \mathbb{R}^2 started from z_0 almost surely never hits 0 but comes arbitrarily close to 0 on an unbounded set of times.

4

(a) Let M be a continuous local martingale and let $Z = \mathcal{E}(M)$, where $\mathcal{E}(M)_t = \exp(M_t - (1/2)[M]_t)$ denotes the exponential local martingale associated with M. Show that $dZ_t = Z_t dM_t$. Suppose now that Z and Z' are two strictly positive processes such that $Z_0 = Z'_0$ and

$$dZ_t = Z_t dM_t; \quad dZ_t' = Z_t' dM_t.$$

By considering $\ln(Z'_t) - \ln(Z_t)$, show that Z and Z' are indistinguishable.

(b) Let \mathbb{P} denote the Wiener measure (i.e., the law of a Brownian motion $(X_t, t \ge 0)$), and let \mathbb{Q} be a measure which is absolutely continuous with respect to \mathbb{P} on \mathcal{F}_t for every t > 0, where $(\mathcal{F}_t)_{t \ge 0}$ is the filtration generated by X. We denote by Z_t the Radon-Nikodyn derivative of \mathbb{Q} with respect to \mathbb{P} on \mathcal{F}_t : that is,

$$\frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathcal{F}_t} = Z_t.$$

Show that $(Z_t, t \ge 0)$ is a martingale in $(\mathcal{F}_t)_{t\ge 0}$. Assume that $Z_t = h(X_t, t)$, where h(x, t) is a given positive \mathcal{C}^2 function. Deduce that $D_t h + D_{xx} h = 0$, where $D_t h$, $D_{tt} h$ (resp. $D_x h$, $D_{xx} h$) denote the first and second derivatives of h with respect to t (resp. x).

(c) Using the same notations as in (b), show that $dZ_t = Z_t dM_t$ where M is defined by:

$$M_0 = 0; \quad dM_t = \frac{D_x h(X_t, t)}{h(X_t, t)} dX_t.$$

Deduce from this and the result in (a) that $Z_t = \mathcal{E}(M)_t$. [You may use without proof the fact that $Z_0 = 1$ almost surely].

Conclude that the semimartingale decomposition of X under \mathbb{Q} is

$$X_t = B_t + \int_0^t \frac{D_x h(X_s, s)}{h(X_s, s)} ds,$$

where B is a Brownian motion. [Hint: You may use Girsanov's theorem without proof, provided that you state it clearly and verify the assumptions carefully].

5

(a) Let $(B_t, t \ge 0)$ be a one-dimensional Brownian motion and let $Y_t = e^{B_t + t/2}$. Show that Y solves a certain stochastic differential equation, whose coefficients should be determined. Does pathwise uniqueness hold for this equation? Using the Dubins-Schwartz theorem, show that there exists a Brownian motion $(\beta_t, t \ge 0)$ such that

$$Y_t = 1 + \beta_{H_t} + \int_0^t \frac{1}{Y_s} dH_s \tag{1}$$

where $H_t = \int_0^t e^{2B_s + s} ds$.

(b) The notations are the same as in (a). Let $J_t = \inf\{s > 0 : H_s > t\}$. Deduce from the above that if $X_t = Y_{J_t}$, then

$$X_t = 1 + \beta_t + \int_0^t \frac{1}{X_s} ds. {2}$$

[Hint: note that $H_{J_t} = t$ for all $t \ge 0$ and use a change of variable in the integral appearing in the right-hand side of (1).]

(c) Let $(W_t, t \ge 0)$ be a Brownian motion in \mathbb{R}^3 started from $W_0 = (1, 0, 0)$, and let $|W_t|$ denote the Euclidean norm of W_t . Show that |W| is also a solution of (2) and deduce that $\lim_{t\to\infty} |W_t| = \infty$ almost surely. [You may assume without proof that there is uniqueness in distribution for the solutions of (2).]

Show further that

$$\lim_{t \to \infty} \frac{\log(|W_t|)}{\log(t)} = \frac{1}{2},$$

almost surely. Assuming without proof the existence of this limit, explain briefly how you could have guessed its value using a different method.

Throughout this question, we fix a probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ satisfying the usual conditions: the filtration $(\mathcal{F}_t)_{t \geq 0}$ is right-continuous and \mathcal{F}_0 contains all events of probability zero.

(a) Let $\sigma, b : \mathbb{R} \to \mathbb{R}$ be two measurable and locally bounded functions, and suppose that an adapted continuous stochastic process $(X_t, t \ge 0)$ is a solution to the stochastic differential equation:

$$dX_t = \sigma(X_t)dB_t + b(X_t)dt \tag{1}$$

where $(B_t, t \ge 0)$ is a one-dimensional $(\mathcal{F}_t)_{t \ge 0}$ -Brownian motion. Assume that $s: I \to \mathbb{R}$ is a \mathcal{C}^2 function on an interval I such that

$$\frac{1}{2}s''(x)\sigma^2(x) + s'(x)b(x) = 0, \quad x \in I.$$
 (2)

Show that $Y_t = s(X_{t \wedge T})$ is a local martingale, where $T = \inf\{t \geq 0 : X_t \notin I\}$. Such a function s is called a scale function for (1) on I. Deduce that if a < x < b with $a, b \in I$, and $X_0 = x$ almost surely, then

$$\mathbb{P}(T_b < T_a) = \frac{s(x) - s(a)}{s(b) - s(a)},$$

where for all $y \in \mathbb{R}$, $T_y = \inf\{t \ge 0 : X_t = y\}$.

(b) Let a > 0 with $a \neq 1/2$, and assume that X is a positive solution to the stochastic differential equation

$$dX_t = dB_t + \frac{a}{X_t}dt. (3)$$

Show that for all $\epsilon > 0$, $s(x) = x^{-2a+1}$ is a scale function for (3) on $[\epsilon, \infty)$. Conclude that for all x > 0, if $X_0 = x$, then $T_0 = \infty$ almost surely if a > 1/2, while $T_0 < \infty$ almost surely if a < 1/2.

(c) Assume that a>1/2. Show that for every $\epsilon>0$ and for every driving Brownian motion B, there exists a unique process $(X_t^{\epsilon}, t \geq 0)$ which satisfies (3) for all $t < T_{\epsilon}^{\epsilon}$, where for all $\epsilon>0$, $T_{\epsilon}^{\epsilon}=\inf\{t \geq 0: X_t^{\epsilon}=\epsilon\}$. Show that T_{ϵ}^{ϵ} is nondecreasing as $\epsilon\to 0$, and let $T=\lim_{\epsilon\to 0}T_{\epsilon}^{\epsilon}$. Deduce that one can construct a process $(X_t, t \geq 0)$ which is a solution of (3) for all t < T. Show that necessarily $T=\infty$ almost surely. Conclude that in the case a>1/2 there exists a strong solution to (3) for every driving Brownian motion B and that pathwise uniqueness holds.

END OF PAPER