

M. PHIL. IN STATISTICAL SCIENCE

Friday 8 June 2007 1.30 to 3.30

STOCHASTIC LOEWNER EVOLUTIONS

Attempt **THREE** questions.

There are **FOUR** questions in total.

The questions carry equal weight.

 $STATIONERY\ REQUIREMENTS$

Cover sheet Treasury Tag Script paper $SPECIAL\ REQUIREMENTS$

None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1 Let $(K_t)_{t\geqslant 0}$ be a strictly increasing family of compact \mathbb{H} -hulls with $hcap(K_t) = 2t$ for all t and with the local growth property, having Loewner transform $(\xi_t)_{t\geqslant 0}$. Explain all the italicized terms in the preceding sentence and state how one can obtain $(\xi_t)_{t\geqslant 0}$ from $(K_t)_{t\geqslant 0}$. Discuss briefly also how to reconstruct $(K_t)_{t\geqslant 0}$ from $(\xi_t)_{t\geqslant 0}$.

Let $\kappa \in [0, \infty)$. What is meant by saying that a continuous process $(\gamma_t)_{t \geqslant 0}$ is (chordal, half-plane) $SLE(\kappa)$?

Show carefully that $SLE(\kappa)$ is scale-invariant.

Explain how it is possible to define in a consistent way $SLE(\kappa)$ in any simply connected Jordan domain D from one given boundary point z_0 to another z_1 . (You may assume that $|\gamma_t| \to \infty$ as $t \to \infty$ almost surely.)

- **2** Let γ be an $SLE(\kappa)$, with $\kappa \in (0,4)$. Show that, almost surely, γ is a simple curve and $|\gamma_t| \to \infty$ as $t \to \infty$. You may use any facts about Bessel processes you wish, without proof, provided that these are clearly stated.
- **3** Fix $a \in (0,1/2)$. For $x,y \in (0,\infty)$, define processes X and Y by the stochastic differential equations

$$dX_t = dB_t + \frac{a}{X_t}, \quad dY_t = -dB_t + \frac{a}{Y_t}, \quad X_0 = x, \quad Y_0 = y,$$

where B is a Brownian motion, and we consider X as defined up to the first time ζ that it hits 0, and similarly Y as defined up to the first time τ that it hits 0. Show that $\zeta < \infty$, almost surely.

Show moreover that

$$\mathbb{P}(\zeta < \tau) = c \int_0^{y/(x+y)} \frac{du}{u^{2-4a}(1-u)^{2a}},$$

for some constant c independent of x and y.

Discuss briefly how this probability can be interpreted, for a suitable value of a, which you should specify, as a crossing probability for the continuum limit of critical planar percolation.

Explain what is meant by a *filling* of $D = (U, z_0, z_1)$, where U is a simply connected complex domain, and z_0, z_1 are two distinct points of the conformal boundary of U.

Suppose that $(\mu_D : D \in \mathcal{D})$ is a conformally invariant family of probability measures, indexed by the set \mathcal{D} of all such D, where μ_D is a measure on fillings in D. What does it mean to say that $(\mu_D : D \in \mathcal{D})$ has the restriction property? Express this property in terms of the single measure μ corresponding to $D = (\mathbb{H}, 0, \infty)$.

Let γ be an SLE(8/3) and let E be a Brownian excursion in \mathbb{H} , from 0 to ∞ . Thus E = (B, |W|) with B and W independent Brownian motions, starting from 0, in \mathbb{R} and \mathbb{R}^3 respectively. For D a filling of $(\mathbb{H}, 0, \infty)$, it is known that

$$\mathbb{P}(\gamma_t \in D \text{ for all } t \geqslant 0) = (\Phi_D'(0))^{5/8}, \quad \mathbb{P}(E_t \in D \text{ for all } t \geqslant 0) = \Phi_D'(0),$$

where Φ_D is the conformal isomorphism $D \to (\mathbb{H}, 0, \infty)$ with $\Phi'_D(\infty) = 1$. [You are not expected to prove these facts in this question.] Deduce that the fillings $\bar{\gamma}$ and \bar{E} , generated by γ and E respectively, both have the restriction property.

Show further that the law of the filling $\bar{\gamma}^{\otimes 8}$ generated by eight independent copies of γ coincides with the law of the filling $\bar{E}^{\otimes 5}$ generated by five independent copies of E.

END OF PAPER