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TIME SERIES AND MONTE CARLO INFERENCE

Attempt FOUR questions

There are six questions in total

The questions carry equal weight

Note: The following properties of the Inverse Gamma distribution may be used
without proof. If X ∼ Γ−1(a, b), then

fX(x) =
ba

Γ(a)
x−(a+1)e−b/x x > 0

and E(x) =
b

a− 1
, with Var(x) =

b2

(a− 1)2(a− 2)
for a > 2.

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Monte Carlo Inference

(a) (i) Let h : R → R denote a non-negative function with finite integral over R.
If (U, V ) is uniformly distributed in the region Ch = {(U, V ) : 0 6 U 6

(
h
(

V
U

))1/2},
calculate the joint density of X1 = V/U and X2 = U .

(ii) Hence show that X1 has density function

f(x) =
h(x)∫∞

−∞ h(y)dy
−∞ < x < ∞.

(iii) Consider the Laplace distribution with probability density function

f(x) = 1
4 exp

(
−|x− 1|

2

)
−∞ < x < ∞.

For h(x) = exp
(
−|x− 1|

2

)
and

a =
√

sup
x

(h(x)), b1 = −
√

sup
x60

(x2h(x)), b2 =
√

sup
x>0

(x2h(x)),

show that a, b1, and b2 are finite.

(iv) Hence describe how we may sample from the Laplace distribution using the
ratio of uniforms methods given above.

(b) (i) For density function f , show that if F (x) =
∫ x

−∞ f(u) du and
U ∼ U [0, 1], then X = F−1(U) ∼ f .

(ii) Describe how we can sample from the Laplace distribution given in (a) using
the method of inversion.
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2 Monte Carlo Inference

(a) (i) Explain how the method of importance sampling may be used to estimate
µ = Ef (θ(x)) from a sample x1, . . . , xn ∼ g(x), where f(x) and g(x) are normalised
densities with common support and θ(x) denotes any general scalar function of x.

(ii) How would your description in (i) change if the normalisation constant for f
and/or g were unknown?

(iii) Show that the variance of the importance sampling estimator µ̂g is given by

Var(µ̂g) =
1
n

∫
f2(x)θ2(x)

g(x)
dx− µ2

n
.

(iv) Hence show that sampling from

g0(x) ∝ |θ(x)f(x)|

minimises Var(µ̂g) over all densities g.

[Recall the Cauchy-Schwarz inequality(∫
f(x)g(x)dx

)2

6
∫

f2(x)dx

∫
g2(x) dx.]

(b) (i) Suppose that f(x) =
1

π(1 + x2)
and µ = Pf (X > k). What function θ(x) could

be used to estimate µ via importance sampling?

(ii) Take g(x) ∝ 1
x2 , k 6 x < ∞. What is the normalisation constant for g?

(iii) How would you obtain samples from g via inversion?

(iv) Hence show that if ui ∼ U [0, 1] i = 1, . . . , n, then

µ̂ =
1
n

n∑
i=1

k

π(u2
i + k2)

is an importance sampling estimator for µ.
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3 Monte Carlo Inference

(a) (i) Define the Gibbs Sampler for obtaining a dependent sample from some distri-
bution π(θ), θ ∈ Rp.

(ii) Suppose that we observe data y = (y1, . . . , yn)T , with corresponding known
covariates x = (x1, . . . , xn)T and that we fit a polynomial regression model of order k to
the data. Then we can express the model in the form

y = Xkak + ε

for design matrix

Xk =

 1 x1 · · · xk
1

...
...

...
1 xn · · · xk

n


and where ak = (a0, a1, . . . , ak)T and ε = (ε1, . . . , εn)T , with ε ∼ N (0, σ2I), where I is
the n × n identity matrix. For priors σ2 ∼ Γ−1(α, β) and ak ∼ N (µk,Σk) the posterior
distribution is given by

π(ak, σ2|x,y) ∝ 1
(σ2)n/2

exp
(
−1

2
(y −Xkak)T (σ2I)−1(y −Xkak)

)

×(σ2)−(α+1) exp
(
− β

σ2

)
× 1

(2π)1/2|Σk|k/2
exp

(
−1

2
(ak − µk)T Σ−1

k (ak − µk)
)

.

Calculate the conditional distributions π(ak|σ2,x,y) and π(σ2|ak,x,y).

(iii) Hence describe how we can use the Gibbs Sampler to obtain a dependent
sample from the joint posterior distribution π(ak, σ2|x,y).

(b) Now suppose that the order of the polynomial model is unknown, and that we use
a reversible jump procedure to update the order of the polynomial model. We propose to
move from the model of order k, with parameters ak, to the model of order k + 1 with
parameters a′k+1 (keeping σ2 fixed) using the following procedure,

a′i = ai for i = 1, . . . , k

a′k+1 = z for z ∼ N(0, σ2
a)

a′0 = a0 − z

(
1
n

n∑
i=1

xk+1
i

)
.

(i) Calculate an explicit expression for the corresponding acceptance probability for
this move.

(ii) Define the reverse move, for moving from the model of order k +1 to the model
of order k.

(iii) What is the corresponding acceptance probability for this reverse move, from
the model of order k + 1, to the model of order k?
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4 Monte Carlo Inference

(a) (i) Suppose x1, . . . , xn
iid∼ N(µ, σ2). State the likelihood function L(x|µ, σ2) for

these data and derive the maximum likelihood estimates for µ and σ2.

(ii) Describe the simulated annealing algorithm for maximising some function f(θ)
with respect to θ.

(iii) Show how the simulated annealing algorithm can be used to maximise
L(x|µ, σ2) above, with respect to θ = (µ, σ2), using Gibbs Sampler updates.

(iv) Hence show that the simulated annealing algorithm converges to the maximum
likelihood estimate as the system “freezes”.

(b) (i) Describe the EM algorithm for maximising a likelihood in the presence of
“missing data”.

(ii) Suppose x1, . . . , xn are drawn independently from a mixture distribution
comprising two normals so that

f(x|θ) = αf1(x) + (1− α)f2(x)

where fj(x) denotes the density for a normal distribution with mean µj and common
variance σ2, and θ = (α, µ1, µ2, σ

2).

Suppose that we now introduce auxiliary variables Zij such that

Zij =
{

1 if xi ∼ N(µj , σ
2)

0 else.

Show that the likelihood function can be written as

L(x|θ, Z) =
n∏

i=1

2∏
j=1

(αjfj(xi))
Zij .

(iii) If we let wij(θ) = E(Zij |θ,x) and n
(m)
j =

∑n
i=1 wij(θ(m)), show that an EM

algorithm to find the maximum likelihood estimator for θ uses the following transitions

α(m+1) = n
(m)
1 /n

µ
(m+1)
j =

1

n
(m)
j

n∑
i=1

wij(θm)xi.

What is the corresponding transition for σ2(m+1)?
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5 Time Series

Let X be a second order stationary process. Define its autocorrelations, correlogram
and sample partial autocorrelations and explain how they can be used to diagnose AR and
MA processes.

Suppose that Xt = Tt + εt, where εt is the Gaussian white noise of variance σ2 > 0
and Tt = a + bt + ct2 is a quadratic trend. Find the symmetric moving average on five
points that provides an unbiased estimator of the trend with smallest quadratic error.
Show that there is no such estimator on three points.

Explain how a centred moving average can be used to estimate seasonal components.
Discuss a danger related to successive application of moving averages.

What is meant by exponential smoothing? Define the methods of simple and double
exponential smoothing, and explain when they can be used to forecast time series.

6 Time Series

State carefully and prove the filter theorem. In your answer you should define the
following terms: linear filter, filter generating function, filter transfer function.

Let X = {Xt : t ∈ Z} be an ARMA(p, q) process,

ϕ(B)X = θ(B)ε,

where ϕ(z) =
∑p

r=0 ϕrz
r, θ(z) =

∑q
s=0 θsz

s, and ε = {εt : t ∈ Z} is the Gaussian white
noise, Eε2

t = σ2 > 0. Compute the spectral density of X. Explain what is meant by
identifiability of a stationary process and specify when the ARMA process X above is
stationary and identifiable. Show that in the latter case the process X is also invertible.

For a stationary ARMA(p, q) process X, show that the coefficients ck, ck−1, . . .
of the Wold representation X = C(B)ε satisfy a certain difference equation for all
k > max(p − 1, q) and describe their limiting behaviour as k → ∞. Relate this property
to the limiting behaviour of the autocovariances of X.

Compute the autocovariance function for the stationary process X satisfying the
equation

Xt =
1
3
Xt−1 +

2
9
Xt−2 + εt −

2
3
εt−1,

ε being the Gaussian white noise of variance σ2 = Eε2
t > 0, and determine to which class

of stationary processes X belongs.
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