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ADVANCED PROBABILITY

Attempt FOUR questions

There are six questions in total

The questions carry equal weight

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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1 Define a Lévy process with characteristic exponent ψ. Let Xt be such a process.
Show that, for all u ∈ R, the following process is a martingale:

Mu
t = exp

{
iuXt − tψ(u)

}
.

What is an infinitely divisible distribution? Let Xt be a Lévy process. Show that
the distribution of X1 is infinitely divisible.

State carefully, without proof, the Lévy-Khinchin theorem.

Let Xt be a continuous Lévy process. Show that it is expressible in the form
bt+

√
aBt, where B· is the standard Brownian motion.

[Hint: Consider, for each ε > 0, the Lévy process with characteristic exponent

ψε(u) =
∫
|y|≥ε

(
eiuy − 1− iuy1|y|<1

)
K(dy).]

2 State carefully, without proof, the optional stopping theorem.

Let T be a stopping time with ET < ∞ and let Xn be a supermartingale with
uniformly bounded increments, i.e., there exists a finite constant K > 0 such that∣∣Xn(ω)−Xn−1(ω)

∣∣ ≤ K ∀(n, ω).

Show that XT is integrable and E(XT ) ≤ E(X0).

Consider successive flips of a coin having probability p of landing heads. Use
a martingale argument to compute the expected number of flips until the sequence
HHTTHHT appears.

3 Let Bt be a Brownian motion starting at the origin, B0 = 0. Show that
Mt = exp

{
λBt − 1

2λ
2t

}
is a martingale.

Consider the process Xt = Bt + µt, a Brownian motion with drift µ > 0, X0 = 0.
For positive a and b, define the stopping time

T = inf
{
t ≥ 0 : Xt = a or Xt = −b

}
.

Show that T <∞ almost surely. Compute P(XT = a) and E(T ).

ADVANCED PROBABILITY
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4 Define standard one-dimensional Brownian motion; state the Wiener theorem and
sketch its proof.

Show that, almost surely,

(a) trajectories of the Brownian motion Bt are Hölder continuous of exponent α
for all α < 1/2;

(b) there is no interval (r, s) on which t 7→ Bt is Hölder continuous of exponent α
for any α > 1/2.

Explain briefly the relation of this result to differentiability properties of Bt.

ADVANCED PROBABILITY [TURN OVER
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5 Let µ and
(
µn : n ∈ N

)
be probability measures in C([0, 1],R), the space of real

continuous functions on [0, 1]. It is known that if the sequence µn is tight and if all
finite-dimensional distributions of µn converge weakly to those of µ, then the sequence µn

converges weakly in C([0, 1],R) to µ. Use this fact to get a proof of the Donsker invariance
principle for random walks according to the following steps:

(a) Let
(
Sn

)
n≥0

be a random walk with i.i.d. steps ξ of mean 0, variance 1 and
finite fourth moment. Write

(
St)t≥0 for the linear interpolation

Sn+r = (1− r)Sn + rSn+1, r ∈ [0, 1],

and denote by µN the probability distribution of SN
t = N−1/2SNt, t ∈ [0, 1]. For any

k ≥ 1 and 0 = t0 < t1 < . . . < tk ≤ 1, let µt1,...,tk

N be the law of(
SN

t1 , S
N
t2 , . . . , S

N
tk

)
.

Show that the characteristic functions

ϕN
t1,...,tk

(λ1, . . . , λk) = E exp
{
i

k∑
l=1

λl

(
SN

tl
− SN

tl−1

)}
satisfy

lim
N→∞

ϕN
t1,...,tk

(λ1, . . . , λk) = exp
{
− 1

2

k∑
l=1

λl
2(tl − tl−1)

}
and thus deduce that all finite-dimensional distributions µt1,...,tk

N converge to the corre-
sponding finite-dimensional distributions of the Wiener measure µ on [0, 1].

(b) For every N ≥ 1, consider a random process XN
t such that

XN
• ∈ C0

(
[0, 1],R

)
=

{
f ∈ C

(
[0, 1],R

)
: f(0) = 0

}
and let νN be its distribution. The sequence of such measures

(
νN ;N ≥ 1

)
is known to

be tight if for some positive C, γ, α and all N ≥ 1, t1, t2 ∈ [0, 1],

E
∣∣XN

t1 −XN
t2

∣∣γ ≤ C|t1 − t2|1+α.

Verify that the sequence of measures µN in (a) is tight and thus deduce the
Donsker invariance principle.
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6 Let
(
ξt : t ∈ N0 = N ∪ {0}

)
be the simple symmetric random walk on Zd, d ≥ 3,

starting at the origin, ξ0 = 0. Let, further,
(
h(t, x) : t ∈ N, x ∈ Zd

)
be i.i.d. random

variables such that P(h = ±1) = 1/2. For a fixed ε ∈ (0, 1) and T ∈ N, consider the
process

κT =
T∏

j=1

(
1 + εh(j, ξj)

)
.

Denote by 〈·〉 the expectation w.r.t. the process ξ and by E(·) the expectation w.r.t. the
h-variables. The aim is to describe the limiting behaviour of 〈κT 〉 as T →∞.

(a) Verify that

〈κt〉 ≡
1

(2d)t

∑
ω

t∏
j=1

(
1 + εh(j, ξj)

)
is a martingale w.r.t. the filtration

(
Ft

)
t≥0

, Ft = σ
(
h(s, x) : s ≤ t, x ∈ Zd

)
. The

summation above is over all nearest neighbour paths ω = (ξ1, . . . , ξt) of length t starting
at the origin. Deduce that

〈
κt

〉
converges a.s., as t→∞, to some random variable ζ ≥ 0.

(b) Let ξ(1), ξ(2) be two independent copies of the random walk ξ (independent also of
the h-variables) with the corresponding processes

κ
(i)
t =

t∏
j=1

(
1 + εh(j, ξ(i)j )

)
, i = 1, 2.

Using the identity
E
(
〈κt〉2

)
= E

(〈
κ

(1)
t κ

(2)
t

〉)
(and by expressing E

(〈
κ

(1)
t κ

(2)
t

〉)
in terms of the intersections of ξ(1) and ξ(2)) or otherwise,

show that, for ε small enough,
〈
κt

〉
is a martingale bounded in L2 and thus its limit ζ

satisfies Eζ = E
〈
κt

〉
= 1.

[Hint. You may use without proof the following transience property of random
walks in Zd whose steps are bounded and symmetrically distributed w.r.t. zero: in
dimension d ≥ 3, after each visit to the origin such a walk has positive probability of
never returning back to the origin.]

(c) Show that {ζ = 0} is measurable w.r.t. the tail σ-field T∞,

T∞ =
⋂
t

σ
(
h(s, x) : s ≥ t, x ∈ Zd

)
,

and deduce that P(ζ = 0) = 0, i.e. ζ > 0 a.s.
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