Homotopies

- 1. Let $a: S^n \to S^n$ be the antipodal map. Show that $a \simeq \mathrm{id}_{S^n}$ if n is odd.
- 2. Show that $\mathbb{R}^n \{0\} \simeq S^{n-1}$.

Homological algebra

1. Say as much as possible about the unknown group G and map f in the following exact sequences:

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow G \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$
$$0 \longrightarrow G \longrightarrow \mathbb{Z} \xrightarrow{f} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

2. Compute the homology of the following chain complex:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{f} \mathbb{Z}^2 \xrightarrow{g} \mathbb{Z} \longrightarrow 0$$

where the maps f and g are given in matrix form by $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$ respectively.

Simplicial homology

- 1. Compute $H_n({\text{point}})$ for all n.
- 2. Compute $H_n(S^1)$, using $S^1 \cong \bigtriangleup$.
- 3. Show that $H_0(X) \cong \mathbb{Z}^{\# \text{ connected components of } X}$

Mayer-Vietoris and applications

- 1. Using your previous computation of $H_k(S^1)$, compute $H_k(S^n)$ for n > 1. (Hint: $S^n \{\text{point}\}$ is homotopic to a point.)
- 2. Show that there is no continuous map $f: B^n \to S^{n-1}$ whose restriction to $S^{n-1} = \partial B^n$ is the identity.
- 3. Hence show that any continuous map $g: B^n \to B^n$ has a fixed point. (Hint: construct a map as in the previous question by considering the ray from g(x) towards x for each $x \in B^n$.)