Algebraic Geometry Exercises

JACK SMITH jes980cam.ac.uk

- 1. Draw pictures of $Z(T) \subset \mathbb{A}^2$ for the following choices of T:
 - (a) $T = \{Y X^2\}.$
 - (b) $T = \{Y^2 X^2\}.$
 - (c) $T = \{Y X^2, Y^2 X^2\}.$
- 2. Does your picture for 1(c) show every point of the set Z(T)?
- 3. Given a subset T of $A = k[X_1, \ldots, X_n]$, show that there is a finite subset $S \subset T$ such that Z(S) = Z(T). (Hint: since A is Noetherian, the ideal J generated by T is finitely generated, so there exist polynomials f_1, \ldots, f_m such that $J = (f_1, \ldots, f_m)$. Now write each f_i in terms of some elements of T.)
- 4. Prove that $\bigcap_{\alpha \in \mathcal{A}} Z(J_{\alpha}) = Z(\sum_{\alpha \in \mathcal{A}} J_{\alpha})$ for ideals J_{α} .
- 5. For $k = \mathbb{C}$ find a continuous map $\mathbb{A}^1 \to \mathbb{A}^1$ which is not a regular function.
- 6. Given a set $Y \subset \mathbb{A}^n$, show that Z(I(Y)) is the closure of Y in the Zariski topology.
- 7. Find an ideal $J \subset k[X, Y]$ such that the coordinate ring of the affine variety $Z(J) \subset \mathbb{A}^2$ is not isomorphic to k[X, Y]/J.
- 8. If X is an irreducible topological space, and Y is a non-empty open subset of X, show that Y is irreducible.
- 9. Show that affine space \mathbb{A}^n is compact in the Zariski topology, i.e. that every open cover has a finite subcover. (Hint: assume not, build a strictly descending sequence of closed sets, and apply the argument used to show that decomposition into irreducible components terminates.)
- 10. Show that the parabola $Z(Y X^2) \subset \mathbb{A}^2$ is irreducible.
- 11. Recall that the closed subsets of \mathbb{A}^1 are finite sets of points. Show that such a set is irreducible if and only if it consists of a single point. Directly prove that Z and I induce a correspondence between closed sets and radical ideals in this case, and show that the irreducible closed sets are precisely those corresponding to prime ideals. (Hint: $k[X_1]$ is a principal ideal domain and k is algebraically closed.) The fact that irreducible closed sets in \mathbb{A}^1 are single points reflects the fact that prime ideals in k[X] are maximal.
- 12. If R is a ring, and J an ideal in R, show that the radical of J is also an ideal. (Hint: if $r_1^{n_1} \in J$ and $r_2^{n_2} \in J$ then expand $(r_1 + r_2)^{n_1 + n_2}$.)
- 13. Find the k-algebra homomorphism ϕ^* corresponding to each of the following morphisms of affine varieties:

- (a) $\phi : \mathbb{A}^n \to \mathbb{A}^m$, for n < m, given by inclusion as the first n components.
- (b) $\phi : \mathbb{A}^n \to \mathbb{A}^m$, for m < n, given by projection onto the first m components.
- (c) $\phi: Z(XY-1) \subset \mathbb{A}^2 \to \mathbb{A}^1$ given by projecting the hyperbola onto the X-axis.

Extra Questions

14. Prove the Hilbert basis theorem as follows. Suppopse R is a Noetherian ring, and let I be an ideal in R[X]. For each non-negative integer n, let I_n be the set of leading coefficients of degree n polynomials in I; explicitly

$$I_n := \{ r \in R : rX^n + r_{n-1}X^{n-1} + \dots + r_0 \in I \text{ for some } r_0, \dots, r_{n-1} \in R \} \cup \{0\}.$$

Check that $I_0 \subset I_1 \subset I_2 \subset \ldots$ is an increasing sequence of ideals in R. Deduce that there exists N such that $I_n = I_N$ for all $n \geq N$.

Show that for each *n* there exist finitely many degree *n* polynomials $f_{n,1}, \ldots, f_{n,k_n}$ whose leading coefficients generate I_n . Show that the $f_{i,j}$ for $i \leq N$ generate *I*, by taking a polynomial $f \in I$ and showing by induction on the degree of *f* that it can be written in terms of these $f_{i,j}$.

- 15. Show that the decomposition of an affine variety into irreducible components is essentially unique, i.e. that if an affine variety V can be written as $V_1 \cup \cdots \cup V_m$, with each V_i closed and irreducible and not contained in any other V_j , and also as $V'_1 \cup \cdots \cup V'_m$ similarly, then m' = m and, reordering the V'_i if necessary, we have $V'_i = V_i$ for all i. (Hint: consider $V_i \cap V'_j$.)
- 16. Let X and Y be topological spaces, and Z a subset of X.
 - (a) Show that Z is irreducible if and only if for any pair of open sets $U, V \subset X$ meeting Z, their intersection meets Z (i.e. if $U \cap Z \neq \emptyset$ and $V \cap Z \neq \emptyset$ then $U \cap V \cap Z \neq \emptyset$).
 - (b) If $f: X \to Y$ is continuous and Z is irreducible, show that f(Z) is an irreducible subset of Y.
- 17. (a) We've seen the correspondence between points on an affine variety Y and maximal ideals in its coordinate ring A(Y). Let MaxSpec A(Y) denote the set of maximal ideals of A(Y). Under the correspondence $Y \leftrightarrow \text{MaxSpec } A(Y)$, the Zariski topology on Y induces a topology on MaxSpec A(Y); describe this topology explicitly. (What do the closed sets look like?)
 - (b) Now let R be an arbitrary ring (commutative with 1). Let Spec R denote the set of prime ideals of R. In analogy with your answer to the previous part, define a Zariski topology on Spec R.