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Before you begin read these instructions carefully.

The examination paper is divided into two sections. Each question in Section II

carries twice the number of marks of each question in Section I. Candidates may

attempt all four questions from Section I and at most five questions from Section

II. In Section II, no more than three questions on each course may be attempted.

Complete answers are preferred to fragments.

Write on one side of the paper only and begin each answer on a separate sheet.

Write legibly; otherwise you place yourself at a grave disadvantage.

At the end of the examination:

Tie up your answers in separate bundles, marked A, B, C, D, E and F according

to the code letter affixed to each question. Include in the same bundle all questions

from Section I and II with the same code letter.

Attach a completed gold cover sheet to each bundle.

You must also complete a green master cover sheet listing all the questions you have

attempted.

Every cover sheet must bear your examination number and desk number.

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS

Gold cover sheets None

Green master cover sheet

You may not start to read the questions

printed on the subsequent pages until

instructed to do so by the Invigilator.
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SECTION I

1C Vectors and Matrices
(a) Let R be the set of all z ∈ C with real part 1. Draw a picture of R and the

image of R under the map z 7→ ez in the complex plane.

(b) For each of the following equations, find all complex numbers z which satisfy it:

(i) ez = e,

(ii) (log z)2 = −π2

4
.

(c) Prove that there is no complex number z satisfying |z| − z = i.

2A Vectors and Matrices
Define what is meant by the terms rotation, reflection, dilation and shear. Give

examples of real 2× 2 matrices representing each of these.

Consider the three 2× 2 matrices

A =
1√
2

(
1 1
−1 1

)
, B =

1√
2

(
1 1
1 3

)
and C = AB .

Identify the three matrices in terms of your definitions above.

3E Analysis I
What does it mean to say that a function f : R → R is continuous at x0 ∈ R?

Give an example of a continuous function f : (0, 1] → R which is bounded but attains
neither its upper bound nor its lower bound.

The function f : R → R is continuous and non-negative, and satisfies f(x) → 0 as
x → ∞ and f(x) → 0 as x → −∞. Show that f is bounded above and attains its upper
bound.

[Standard results about continuous functions on closed bounded intervals may be
used without proof if clearly stated.]

Part IA, Paper 1



3

4F Analysis I
Let f, g : [0, 1] → R be continuous functions with g(x) > 0 for x ∈ [0, 1]. Show that

∫ 1

0
f(x)g(x) dx 6 M

∫ 1

0
g(x) dx ,

where M = sup{|f(x)| : x ∈ [0, 1]}.
Prove there exists α ∈ [0, 1] such that

∫ 1

0
f(x)g(x) dx = f(α)

∫ 1

0
g(x) dx .

[Standard results about continuous functions and their integrals may be used
without proof, if clearly stated.]
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SECTION II

5C Vectors and Matrices
The equation of a plane Π in R3 is

x · n = d ,

where d is a constant scalar and n is a unit vector normal to Π. What is the distance of
the plane from the origin O?

A sphere S with centre p and radius r satisfies the equation

|x− p|2 = r2 .

Show that the intersection of Π and S contains exactly one point if |p · n− d| = r.

The tetrahedron OABC is defined by the vectors a = ~OA, b = ~OB, and c = ~OC
with a · (b×c) > 0. What does the condition a · (b×c) > 0 imply about the set of vectors
{a,b, c}? A sphere Tr with radius r > 0 lies inside the tetrahedron and intersects each of
the three faces OAB, OBC, and OCA in exactly one point. Show that the centre P of Tr

satisfies

~OP = r
|b× c|a+ |c× a|b+ |a× b|c

a · (b× c)
.

Given that the vector a×b+b× c+ c× a is orthogonal to the plane Ψ of the face
ABC, obtain an equation for Ψ. What is the distance of Ψ from the origin?

6A Vectors and Matrices
Explain why the number of solutions x of the simultaneous linear equations Ax = b

is 0, 1 or infinity, where A is a real 3 × 3 matrix and x and b are vectors in R3. State
necessary and sufficient conditions on A and b for each of these possibilities to hold.

Let A and B be real 3 × 3 matrices. Give necessary and sufficient conditions on A
for there to exist a unique real 3× 3 matrix X satisfying AX = B.

Find X when

A =



1 1 2
1 0 1
1 2 0


 and B =



4 0 1
2 1 0
3 −1 −1
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7B Vectors and Matrices
(a) Consider the matrix

M =




2 1 0
0 1 −1
0 2 4


 .

Determine whether or not M is diagonalisable.

(b) Prove that if A and B are similar matrices then A and B have the same
eigenvalues with the same corresponding algebraic multiplicities.

Is the converse true? Give either a proof (if true) or a counterexample with a brief
reason (if false).

(c) State the Cayley-Hamilton theorem for a complex matrix A and prove it in the
case when A is a 2× 2 diagonalisable matrix.

Suppose that an n × n matrix B has Bk = 0 for some k > n (where 0 denotes the
zero matrix). Show that Bn = 0.

8B Vectors and Matrices
(a) (i) Find the eigenvalues and eigenvectors of the matrix

A =




3 1 1
1 2 0
1 0 2


 .

(ii) Show that the quadric Q in R3 defined by

3x2 + 2xy + 2y2 + 2xz + 2z2 = 1

is an ellipsoid. Find the matrix B of a linear transformation of R3 that will map Q onto
the unit sphere x2 + y2 + z2 = 1.

(b) Let P be a real orthogonal matrix. Prove that:

(i) as a mapping of vectors, P preserves inner products;

(ii) if λ is an eigenvalue of P then |λ| = 1 and λ∗ is also an eigenvalue of P .

Now let Q be a real orthogonal 3×3 matrix having λ = 1 as an eigenvalue of algebraic
multiplicity 2. Give a geometrical description of the action of Q on R3, giving a reason
for your answer. [You may assume that orthogonal matrices are always diagonalisable.]
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9E Analysis I
(a) What does it mean to say that the sequence (xn) of real numbers converges to

ℓ ∈ R?

Suppose that (y
(1)
n ), (y

(2)
n ),. . . , (y

(k)
n ) are sequences of real numbers converging to

the same limit ℓ. Let (xn) be a sequence such that for every n,

xn ∈ {y(1)n , y(2)n , . . . , y(k)n } .

Show that (xn) also converges to ℓ.

Find a collection of sequences (y
(j)
n ), j = 1, 2, . . . such that for every j, (y

(j)
n ) → ℓ

but the sequence (xn) defined by xn = y
(n)
n diverges.

(b) Let a, b be real numbers with 0 < a < b. Sequences (an), (bn) are defined by
a1 = a, b1 = b and

for all n > 1, an+1 =
√

anbn, bn+1 =
an + bn

2
.

Show that (an) and (bn) converge to the same limit.

10D Analysis I

Let (an) be a sequence of reals.

(i) Show that if the sequence (an+1−an) is convergent then so is the sequence
(an
n
)
.

(ii) Give an example to show the sequence
(an
n
)
being convergent does not imply

that the sequence (an+1 − an) is convergent.

(iii) If an+k − an → 0 as n → ∞ for each positive integer k, does it follow that (an)

is convergent? Justify your answer.

(iv) If an+f(n) − an → 0 as n → ∞ for every function f from the positive integers

to the positive integers, does it follow that (an) is convergent? Justify your answer.
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11D Analysis I

Let f be a continuous function from (0, 1) to (0, 1) such that f(x) < x for every

0 < x < 1. We write fn for the n-fold composition of f with itself (so for example

f2(x) = f(f(x))).

(i) Prove that for every 0 < x < 1 we have fn(x) → 0 as n → ∞.

(ii) Must it be the case that for every ǫ > 0 there exists n with the property that

fn(x) < ǫ for all 0 < x < 1? Justify your answer.

Now suppose that we remove the condition that f be continuous.

(iii) Give an example to show that it need not be the case that for every 0 < x < 1

we have fn(x) → 0 as n → ∞.

(iv) Must it be the case that for some 0 < x < 1 we have fn(x) → 0 as n → ∞?

Justify your answer.

12F Analysis I
(a) (i) State the ratio test for the convergence of a real series with positive terms.

(ii) Define the radius of convergence of a real power series
∑∞

n=0 anx
n.

(iii) Prove that the real power series f(x) =
∑

n anx
n and g(x) =

∑
n(n+1)an+1x

n

have equal radii of convergence.

(iv) State the relationship between f(x) and g(x) within their interval of conver-
gence.

(b) (i) Prove that the real series

f(x) =
∞∑

n=0

(−1)n
x2n

(2n)!
, g(x) =

∞∑

n=0

(−1)n
x2n+1

(2n+ 1)!

have radius of convergence ∞.

(ii) Show that they are differentiable on the real line R, with f ′ = −g and g′ = f ,
and deduce that f(x)2 + g(x)2 = 1.

[You may use, without proof, general theorems about differentiating within the
interval of convergence, provided that you give a clear statement of any such theorem.]

END OF PAPER
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