skip to content

Faculty of Mathematics

 

Education and Career

  • 2020 - today: Feodor-Lynen Research Fellow of the Alexander von Humboldt Foundation, DAMTP, University of Cambridge
    • Advisor: Prof. Edriss S. Titi
  • 2017 - 2020: PhD in Mathematics, University of Wuerzburg, Germany
    • Advisor: Prof. Christian Klingenberg
    • Thesis: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations
  • 2014 - 2016: MSc in Mathematics, University of Wuerzburg, Germany
  • 2011 - 2014: BSc in Mathematical Physics, University of Wuerzburg, Germany

 

Publications

Monographs

  • S. Markfelder: Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations. To appear in the Book Series "Lecture Notes in Mathematics", Springer (2021), Preprint available on arXiv: 2001.04373

Articles in Peer-Reviewed Journals

  • C. Klingenberg, O. Kreml, V. Macha, S. Markfelder: Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. Nonlinearity 33(12), 6517-6540 (2020), Preprint available on arXiv: 1912.13074
  • E. Feireisl, C. Klingenberg, S. Markfelder: On the density of wild initial data for the compressible Euler system. Calc. Var. Partial Differential Equations 59(5), Article Number 152 (2020), Preprint available on arXiv: 1812.11802
  • H. Al Baba, C. Klingenberg, O. Kreml, V. Macha, S. Markfelder: Non-uniqueness of admissible weak solutions to the Riemann problem for the full Euler system in 2D. SIAM J. Math. Anal. 52(2), 1729-1760 (2020), Preprint available on arXiv: 1805.11354
  • E. Feireisl, C. Klingenberg, O. Kreml, S. Markfelder: On oscillatory solutions to the complete Euler system. J. Differential Equations 269(2), 1521-1543 (2020), Preprint available on arXiv: 1710.10918
  • E. Feireisl, C. Klingenberg, S. Markfelder: On the low Mach number limit for the compressible Euler system. SIAM J. Math. Anal. 51(2), 1496-1513 (2019), Preprint available on arXiv: 1804.09509
  • C. Klingenberg, S. Markfelder: Non-uniqueness of energy-conservative solutions to the isentropic compressible two-dimensional Euler equations. J. Hyperbolic Differ. Equ. 15(4), 721-730 (2018), Preprint available on arXiv: 1709.04982
  • C. Klingenberg, S. Markfelder: The Riemann problem for the multidimensional isentropic system of gas dynamics is ill-posed if it contains a shock. Arch. Ration. Mech. Anal. 227(3), 967-994 (2018), Preprint available on arXiv: 1708.01063

Articles in Peer-Reviewed Conference Proceedings

  • C. Klingenberg, S. Markfelder: Non-uniqueness of entropy-conserving solutions to the ideal compressible MHD equations. In: "Hyperbolic Problems: Theory, Numerics, Applications", AIMS Series on Applied Mathematics Vol. 10, 491-498 (2020), Preprint available on arXiv: 1902.01446

 

Room

G1.06

Telephone

01223 760436