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Modelling

Stochastic Models of Gene Regulatory Networks

Introduction
Vascular development of leaves are intricately regulated by gene expression. In order to gain insights of the processes and dynamics involved, we wish to derive computational models from the gene regulatory
network and test those models against experimental data. This helps to guide further experimentation. The experimental data in this project was collect from the model plant Arabidopsis thaliana.   
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MONOPTEROS (MP), an auxin response factor, has broad expression. However, HD-ZIP III gene
ARABIDOPSIS THALIANA HOMOEBOX8 (ATHB8), a pre-provascular marker, has narrow domains.
The response of ATHB8 to manipulation of MP levels has been quantified.

Experimental Data: We observe a lot of variation in the experimental data. Originally the data of
ATHB8 and MP levels was categorized into flank and vein. However since both sets have to be
described by the same equation, it is sensible to merge the data. 

A. Motivation

1. Simulation: We use the software  “Organism” to simulate species outcome. Varying
parameters helps  to understand the system and how the parameters affect the bigger picture.

2. Optimisation: Given a model, we want to find the best parameters that fits the actual data.  

Model 1 : A simple model of transcription

This is the simple Hill’s equation (steady state)
derived from the Michaelis-Menten formalism.

Stochastic Modelling:  In this project we mostly
consider models with stochasticity/noise, despite
deterministic modeling  being simpler. Previous
studies have found that noise changes the position or
even the number of stable states. Stochastic
stabilisation has been demonstrated with Hill-type
equations. Noise is essential in genetic regulation
and cell functioning, i.e. it is essential functionally
and not as a correction [1].

We utilize a useful stochastic tool known as the
Langevin equation. Noise is inversely proportional to
E, the effective cell volume.ξ is the uncorrelated
Gaussian white noise whose fluctuation depends on
the magnitude of components.

We use Heun algorithm with Ito interpretation to
numerically integrate the Langevin.

Model 2: Stochastic Hill’s with self regulation (A)

On the left is the resulting model when we add self-
regulation (ATHB8). It follows a more general Hill-
form. The ε term is the multiplicative noise from
the Langevin equation. 

The bifurcation diagram of this model shows the
existence of two stable and one unstable fixed
points for an intermediate value of MP.

Note that we implicitly assume in model 1 and 2
that MP obeys a deterministic differential equation
with a degradation term and a constant rate of
change.

  

Analysis

We can consider more complex
models by assuming the rate
equation of MP is subject to noise:

Model 3: Model 1 + stochastic  MP

Model 4: Model 2 + stochastic  MP

On the left is the gene regulatory
network involved in vascular
development.  Other modelling
options include:

1.  Adding more feedback terms

2.  Adding the role of BDL

B. Stochastic Optimisation 

1. Define an objective function (Input = Parameter n-tuple, Output = cost). This defines a  distance
between the actual dataset and the parameter-tuple (via the simulated datasets in Organism).

2. Perform a parameter sweep. Choose, say k tuples with lowest costs, then run optimisation.

C. An Example:  Finding suitable parameters for Model 2 

The following is an example of parameter sweep (in practice, optimisation is done over higher
dimensions). n=1.5 has more extreme values than  n=2. Looking for low cost,  K1=80, K2=5.5, n=1.5
seems to be a good parameter candidate, we then apply local optimisation method to it.

D. Discussion

1. Objective functions: More elaborate versions incorporate skewness, kurtosis, mean square etc     

2. Model comparison: Again by using objective function. We can include more feedback terms or
modify the nature of noise. We want a good model yet not overfitting one. So next we consider:

3. Predictive power: We can use ‘cross-validation’ to choose the model with best predictive power:
Randomly divide the data into n sets, train n-1 sets and  test on 1 set, and repeat.

Scatterplots/Histogram : The right side illustrates the experimental data, 540 out of 754 data
points have ATHB8 level less than 8.9. The left side is a simulated dataset from (V=140, K1=80,
K2=5.5, n1=n2=1.5, E=0.08). This parameter-tuple performs well, consistently giving simulations
close to actual data by observing the histogram of cell frequency. This particular simulation has
541 out of 754 data points having ATHB8 level below 8.9.   

Equation 1: Langevin equation describing Model 1 with stochasticity
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